具有非对称信息的Dynkin博弈的数值逼近

Ľubomír Baňas, Giorgio Ferrari, Tsiry Avisoa Randrianasolo
{"title":"具有非对称信息的Dynkin博弈的数值逼近","authors":"Ľubomír Baňas, Giorgio Ferrari, Tsiry Avisoa Randrianasolo","doi":"arxiv-2312.01847","DOIUrl":null,"url":null,"abstract":"We propose an implementable, feedforward neural network-based structure\npreserving probabilistic numerical approximation for a generalized obstacle\nproblem describing the value of a zero-sum differential game of optimal\nstopping with asymmetric information. The target solution depends on three\nvariables: the time, the spatial (or state) variable, and a variable from a\nstandard $(I-1)$-simplex which represents the probabilities with which the $I$\npossible configurations of the game are played. The proposed numerical\napproximation preserves the convexity of the continuous solution as well as the\nlower and upper obstacle bounds. We show convergence of the fully-discrete\nscheme to the unique viscosity solution of the continuous problem and present a\nrange of numerical studies to demonstrate its applicability.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical approximation of Dynkin games with asymmetric information\",\"authors\":\"Ľubomír Baňas, Giorgio Ferrari, Tsiry Avisoa Randrianasolo\",\"doi\":\"arxiv-2312.01847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an implementable, feedforward neural network-based structure\\npreserving probabilistic numerical approximation for a generalized obstacle\\nproblem describing the value of a zero-sum differential game of optimal\\nstopping with asymmetric information. The target solution depends on three\\nvariables: the time, the spatial (or state) variable, and a variable from a\\nstandard $(I-1)$-simplex which represents the probabilities with which the $I$\\npossible configurations of the game are played. The proposed numerical\\napproximation preserves the convexity of the continuous solution as well as the\\nlower and upper obstacle bounds. We show convergence of the fully-discrete\\nscheme to the unique viscosity solution of the continuous problem and present a\\nrange of numerical studies to demonstrate its applicability.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个可实现的,基于前馈神经网络的结构保持概率数值逼近,用于描述具有不对称信息的最优停止的零和微分博弈的值。目标解决方案取决于三个变量:时间,空间(或状态)变量,以及一个来自标准$(I-1)$-simplex的变量,该变量表示游戏中$I$可能配置的概率。所提出的数值逼近既保留了连续解的凸性,又保留了障碍的上下边界。我们证明了全离散格式对连续问题的唯一粘性解的收敛性,并给出了一系列数值研究来证明它的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical approximation of Dynkin games with asymmetric information
We propose an implementable, feedforward neural network-based structure preserving probabilistic numerical approximation for a generalized obstacle problem describing the value of a zero-sum differential game of optimal stopping with asymmetric information. The target solution depends on three variables: the time, the spatial (or state) variable, and a variable from a standard $(I-1)$-simplex which represents the probabilities with which the $I$ possible configurations of the game are played. The proposed numerical approximation preserves the convexity of the continuous solution as well as the lower and upper obstacle bounds. We show convergence of the fully-discrete scheme to the unique viscosity solution of the continuous problem and present a range of numerical studies to demonstrate its applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信