确定非线性非局部双曲型方程初始条件的时间降维方法

Trong D. Dang, Loc H. Nguyen, Huong T. T. Vu
{"title":"确定非线性非局部双曲型方程初始条件的时间降维方法","authors":"Trong D. Dang, Loc H. Nguyen, Huong T. T. Vu","doi":"arxiv-2312.01179","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to compute initial conditions for quasi-linear\nhyperbolic equations. Our proposed approach involves approximating the solution\nof the hyperbolic equation by truncating its Fourier expansion in the time\ndomain using the polynomial-exponential basis. This truncation enables the\nelimination of the time variable, resulting in a system of quasi-linear\nelliptic equations. Thus, we refer to our approach as the \"time dimensional\nreduction method.\" To solve this system globally without requesting a good\ninitial guess, we employ the Carleman contraction principle. To demonstrate the\neffectiveness of our method, we provide several numerical examples. The time\ndimensional reduction method not only provides accurate solutions but also\nexhibits exceptional computational speed.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The time dimensional reduction method to determine the initial conditions for nonlinear and nonlocal hyperbolic equations\",\"authors\":\"Trong D. Dang, Loc H. Nguyen, Huong T. T. Vu\",\"doi\":\"arxiv-2312.01179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to compute initial conditions for quasi-linear\\nhyperbolic equations. Our proposed approach involves approximating the solution\\nof the hyperbolic equation by truncating its Fourier expansion in the time\\ndomain using the polynomial-exponential basis. This truncation enables the\\nelimination of the time variable, resulting in a system of quasi-linear\\nelliptic equations. Thus, we refer to our approach as the \\\"time dimensional\\nreduction method.\\\" To solve this system globally without requesting a good\\ninitial guess, we employ the Carleman contraction principle. To demonstrate the\\neffectiveness of our method, we provide several numerical examples. The time\\ndimensional reduction method not only provides accurate solutions but also\\nexhibits exceptional computational speed.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是计算拟线性双曲型方程的初始条件。我们提出的方法包括通过使用多项式指数基在时域中截断其傅立叶展开式来近似双曲方程的解。这种截断可以消除时间变量,从而得到一个拟线性椭圆方程系统。因此,我们把我们的方法称为“时间降维方法”。为了在不要求良好的初始猜测的情况下全局求解该系统,我们采用了Carleman收缩原理。为了证明该方法的有效性,我们给出了几个数值算例。这种降维方法不仅能提供精确的解,而且具有优异的计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The time dimensional reduction method to determine the initial conditions for nonlinear and nonlocal hyperbolic equations
The objective of this paper is to compute initial conditions for quasi-linear hyperbolic equations. Our proposed approach involves approximating the solution of the hyperbolic equation by truncating its Fourier expansion in the time domain using the polynomial-exponential basis. This truncation enables the elimination of the time variable, resulting in a system of quasi-linear elliptic equations. Thus, we refer to our approach as the "time dimensional reduction method." To solve this system globally without requesting a good initial guess, we employ the Carleman contraction principle. To demonstrate the effectiveness of our method, we provide several numerical examples. The time dimensional reduction method not only provides accurate solutions but also exhibits exceptional computational speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信