完全旋转高斯消去中生长因子的一个新的上界

Ankit Bisain, Alan Edelman, John Urschel
{"title":"完全旋转高斯消去中生长因子的一个新的上界","authors":"Ankit Bisain, Alan Edelman, John Urschel","doi":"arxiv-2312.00994","DOIUrl":null,"url":null,"abstract":"The growth factor in Gaussian elimination measures how large the entries of\nan LU factorization can be relative to the entries of the original matrix. It\nis a key parameter in error estimates, and one of the most fundamental topics\nin numerical analysis. We produce an upper bound of $n^{0.2079 \\ln n +0.91}$\nfor the growth factor in Gaussian elimination with complete pivoting -- the\nfirst improvement upon Wilkinson's original 1961 bound of $2 \\, n ^{0.25\\ln n\n+0.5}$.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Upper Bound For the Growth Factor in Gaussian Elimination with Complete Pivoting\",\"authors\":\"Ankit Bisain, Alan Edelman, John Urschel\",\"doi\":\"arxiv-2312.00994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth factor in Gaussian elimination measures how large the entries of\\nan LU factorization can be relative to the entries of the original matrix. It\\nis a key parameter in error estimates, and one of the most fundamental topics\\nin numerical analysis. We produce an upper bound of $n^{0.2079 \\\\ln n +0.91}$\\nfor the growth factor in Gaussian elimination with complete pivoting -- the\\nfirst improvement upon Wilkinson's original 1961 bound of $2 \\\\, n ^{0.25\\\\ln n\\n+0.5}$.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯消去法中的生长因子衡量的是,相对于原始矩阵的元素,LU分解的元素有多大。它是误差估计中的一个关键参数,也是数值分析中最基本的课题之一。我们为高斯消去中具有完全轴向的生长因子产生了$n^{0.2079 \ln n+ 0.91}$的上界——这是对Wilkinson在1961年提出的$2 \,n^{0.25\ln n+0.5}$上界的第一次改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Upper Bound For the Growth Factor in Gaussian Elimination with Complete Pivoting
The growth factor in Gaussian elimination measures how large the entries of an LU factorization can be relative to the entries of the original matrix. It is a key parameter in error estimates, and one of the most fundamental topics in numerical analysis. We produce an upper bound of $n^{0.2079 \ln n +0.91}$ for the growth factor in Gaussian elimination with complete pivoting -- the first improvement upon Wilkinson's original 1961 bound of $2 \, n ^{0.25\ln n +0.5}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信