随机最优控制匹配

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen
{"title":"随机最优控制匹配","authors":"Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen","doi":"arxiv-2312.02027","DOIUrl":null,"url":null,"abstract":"Stochastic optimal control, which has the goal of driving the behavior of\nnoisy systems, is broadly applicable in science, engineering and artificial\nintelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a\nnovel Iterative Diffusion Optimization (IDO) technique for stochastic optimal\ncontrol that stems from the same philosophy as the conditional score matching\nloss for diffusion models. That is, the control is learned via a least squares\nproblem by trying to fit a matching vector field. The training loss, which is\nclosely connected to the cross-entropy loss, is optimized with respect to both\nthe control function and a family of reparameterization matrices which appear\nin the matching vector field. The optimization with respect to the\nreparameterization matrices aims at minimizing the variance of the matching\nvector field. Experimentally, our algorithm achieves lower error than all the\nexisting IDO techniques for stochastic optimal control for four different\ncontrol settings. The key idea underlying SOCM is the path-wise\nreparameterization trick, a novel technique that is of independent interest,\ne.g., for generative modeling.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Optimal Control Matching\",\"authors\":\"Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen\",\"doi\":\"arxiv-2312.02027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic optimal control, which has the goal of driving the behavior of\\nnoisy systems, is broadly applicable in science, engineering and artificial\\nintelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a\\nnovel Iterative Diffusion Optimization (IDO) technique for stochastic optimal\\ncontrol that stems from the same philosophy as the conditional score matching\\nloss for diffusion models. That is, the control is learned via a least squares\\nproblem by trying to fit a matching vector field. The training loss, which is\\nclosely connected to the cross-entropy loss, is optimized with respect to both\\nthe control function and a family of reparameterization matrices which appear\\nin the matching vector field. The optimization with respect to the\\nreparameterization matrices aims at minimizing the variance of the matching\\nvector field. Experimentally, our algorithm achieves lower error than all the\\nexisting IDO techniques for stochastic optimal control for four different\\ncontrol settings. The key idea underlying SOCM is the path-wise\\nreparameterization trick, a novel technique that is of independent interest,\\ne.g., for generative modeling.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机最优控制,其目标是驱动噪声系统的行为,在科学,工程和人工智能中广泛应用。我们的工作介绍了随机最优控制匹配(SOCM),一种用于随机最优控制的新型迭代扩散优化(IDO)技术,其原理与扩散模型的条件分数匹配损失相同。也就是说,控制是通过最小二乘问题来学习的,通过尝试拟合一个匹配的向量场。与交叉熵损失密切相关的训练损失是针对控制函数和出现在匹配向量场中的一组重参数化矩阵进行优化的。关于参数化矩阵的优化旨在最小化匹配向量场的方差。在实验中,我们的算法在四种不同的控制设置下实现了比所有现有的随机最优控制IDO技术更低的误差。SOCM的关键思想是路径智能参数化技巧,这是一种独立感兴趣的新技术。,用于生成建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Optimal Control Matching
Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic optimal control for four different control settings. The key idea underlying SOCM is the path-wise reparameterization trick, a novel technique that is of independent interest, e.g., for generative modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信