有限非j平凡非周期模群生成的极限变种

Pub Date : 2023-12-04 DOI:10.1007/s00233-023-10399-2
Olga B. Sapir
{"title":"有限非j平凡非周期模群生成的极限变种","authors":"Olga B. Sapir","doi":"10.1007/s00233-023-10399-2","DOIUrl":null,"url":null,"abstract":"<p>Jackson and Lee proved that certain six-element monoid generates a hereditarily finitely based variety <span>\\({{\\mathbb {E}}}^1\\)</span> whose lattice of subvarieties contains an infinite ascending chain. We identify syntactic monoids which generate finitely generated subvarieties of <span>\\({{\\mathbb {E}}}^1\\)</span> and show that one of these finite monoids together with certain seven-element monoid generates a new limit variety.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Limit varieties generated by finite non-J-trivial aperiodic monoids\",\"authors\":\"Olga B. Sapir\",\"doi\":\"10.1007/s00233-023-10399-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Jackson and Lee proved that certain six-element monoid generates a hereditarily finitely based variety <span>\\\\({{\\\\mathbb {E}}}^1\\\\)</span> whose lattice of subvarieties contains an infinite ascending chain. We identify syntactic monoids which generate finitely generated subvarieties of <span>\\\\({{\\\\mathbb {E}}}^1\\\\)</span> and show that one of these finite monoids together with certain seven-element monoid generates a new limit variety.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10399-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-023-10399-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Jackson和Lee证明了某六元一元产生一个遗传有限基的变异\({{\mathbb {E}}}^1\),其子变异格包含一个无限上升链。我们确定了生成\({{\mathbb {E}}}^1\)有限生成子变种的句法一元群,并证明了这些有限一元群中的一个与某些七元一元群一起生成一个新的极限变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Limit varieties generated by finite non-J-trivial aperiodic monoids

分享
查看原文
Limit varieties generated by finite non-J-trivial aperiodic monoids

Jackson and Lee proved that certain six-element monoid generates a hereditarily finitely based variety \({{\mathbb {E}}}^1\) whose lattice of subvarieties contains an infinite ascending chain. We identify syntactic monoids which generate finitely generated subvarieties of \({{\mathbb {E}}}^1\) and show that one of these finite monoids together with certain seven-element monoid generates a new limit variety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信