凸函数差分的预条件算法及其在图Ginzburg-Landau模型中的应用

Xinhua Shen, Hongpeng Sun, Xuecheng Tai
{"title":"凸函数差分的预条件算法及其在图Ginzburg-Landau模型中的应用","authors":"Xinhua Shen, Hongpeng Sun, Xuecheng Tai","doi":"10.1137/23m1561270","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 21, Issue 4, Page 1667-1689, December 2023. <br/> Abstract. In this work, we propose and study a preconditioned framework with a graphic Ginzburg–Landau functional for image segmentation and data clustering by parallel computing. Solving nonlocal models is usually challenging due to the huge computation burden. For the nonconvex and nonlocal variational functional, we propose several damped Jacobi and generalized Richardson preconditioners for the large-scale linear systems within a difference of convex functions algorithm framework. These preconditioners are efficient for parallel computing with GPU and can leverage the computational cost. Our framework also provides flexible step sizes with a global convergence guarantee. Numerical experiments show the proposed algorithms are very competitive compared to the singular value decomposition based spectral method.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preconditioned Algorithm for Difference of Convex Functions with Applications to Graph Ginzburg–Landau Model\",\"authors\":\"Xinhua Shen, Hongpeng Sun, Xuecheng Tai\",\"doi\":\"10.1137/23m1561270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale Modeling &amp;Simulation, Volume 21, Issue 4, Page 1667-1689, December 2023. <br/> Abstract. In this work, we propose and study a preconditioned framework with a graphic Ginzburg–Landau functional for image segmentation and data clustering by parallel computing. Solving nonlocal models is usually challenging due to the huge computation burden. For the nonconvex and nonlocal variational functional, we propose several damped Jacobi and generalized Richardson preconditioners for the large-scale linear systems within a difference of convex functions algorithm framework. These preconditioners are efficient for parallel computing with GPU and can leverage the computational cost. Our framework also provides flexible step sizes with a global convergence guarantee. Numerical experiments show the proposed algorithms are very competitive compared to the singular value decomposition based spectral method.\",\"PeriodicalId\":501053,\"journal\":{\"name\":\"Multiscale Modeling and Simulation\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1561270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1561270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度建模与仿真,第21卷,第4期,1667-1689页,2023年12月。摘要。在这项工作中,我们提出并研究了一个带有图形金兹堡-朗道函数的预处理框架,用于并行计算图像分割和数据聚类。由于计算量巨大,求解非局部模型通常具有挑战性。对于非凸和非局部变分泛函,在不同的凸函数算法框架下,我们提出了几个阻尼Jacobi和广义Richardson预条件。这些预条件对于GPU并行计算是有效的,并且可以利用计算成本。我们的框架还提供了灵活的步长和全局收敛保证。数值实验表明,该算法与基于奇异值分解的谱法相比具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preconditioned Algorithm for Difference of Convex Functions with Applications to Graph Ginzburg–Landau Model
Multiscale Modeling &Simulation, Volume 21, Issue 4, Page 1667-1689, December 2023.
Abstract. In this work, we propose and study a preconditioned framework with a graphic Ginzburg–Landau functional for image segmentation and data clustering by parallel computing. Solving nonlocal models is usually challenging due to the huge computation burden. For the nonconvex and nonlocal variational functional, we propose several damped Jacobi and generalized Richardson preconditioners for the large-scale linear systems within a difference of convex functions algorithm framework. These preconditioners are efficient for parallel computing with GPU and can leverage the computational cost. Our framework also provides flexible step sizes with a global convergence guarantee. Numerical experiments show the proposed algorithms are very competitive compared to the singular value decomposition based spectral method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信