{"title":"φ-混合和m-相关随机变量的正态逼近","authors":"Jonas Kazys Sunklodas","doi":"10.1007/s10986-023-09612-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we estimate the difference |<b>E</b><i>h</i>(<i>Z</i><sub><i>n</i></sub>) <i>−</i> <b>E</b><i>h</i>(<i>Y</i>)<i>|</i> between the expectations of real finite Lipschitz function <i>h</i> of the sum <i>Z</i><sub><i>n</i></sub> = (<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<i>/B</i><sub><i>n</i></sub>, where <span>\\({B}_{n}^{2}\\)</span> = <b>E</b>(<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<sup>2</sup> <i>></i> 0, and a standard normal random variable <i>Y</i>, where real centered random variables <i>X</i><sub>1</sub><i>,X</i><sub>2</sub><i>,</i>… satisfy the <i>φ</i>-mixing condition, defined between the “past” and “ future”, or are <i>m</i>-dependent. In particular cases, under the condition <span>\\({\\sum }_{r=1}^{\\infty }r\\varphi (r)<\\infty \\)</span> or <span>\\({\\sum }_{r=1}^{\\infty }{r\\varphi }^{1/2}(r)<\\infty \\)</span>, the obtained upper bounds for <i>φ</i>-mixing random variables are of order <i>O</i>(<i>n</i><sup><i>−</i>1<i>/</i>2</sup>). In addition, we refine the previously known upper bounds of order <i>O</i>((<i>m</i> + 1)<sup>1+<i>δ</i></sup><i>L</i><sub>2+<i>δ,n</i></sub>), where <i>L</i><sub>2+<i>δ,n</i></sub> is the Lyapunov fraction of order 2 + <i>δ</i>, for <i>m</i>-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On normal approximation for φ-mixing and m-dependent random variables\",\"authors\":\"Jonas Kazys Sunklodas\",\"doi\":\"10.1007/s10986-023-09612-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we estimate the difference |<b>E</b><i>h</i>(<i>Z</i><sub><i>n</i></sub>) <i>−</i> <b>E</b><i>h</i>(<i>Y</i>)<i>|</i> between the expectations of real finite Lipschitz function <i>h</i> of the sum <i>Z</i><sub><i>n</i></sub> = (<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<i>/B</i><sub><i>n</i></sub>, where <span>\\\\({B}_{n}^{2}\\\\)</span> = <b>E</b>(<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<sup>2</sup> <i>></i> 0, and a standard normal random variable <i>Y</i>, where real centered random variables <i>X</i><sub>1</sub><i>,X</i><sub>2</sub><i>,</i>… satisfy the <i>φ</i>-mixing condition, defined between the “past” and “ future”, or are <i>m</i>-dependent. In particular cases, under the condition <span>\\\\({\\\\sum }_{r=1}^{\\\\infty }r\\\\varphi (r)<\\\\infty \\\\)</span> or <span>\\\\({\\\\sum }_{r=1}^{\\\\infty }{r\\\\varphi }^{1/2}(r)<\\\\infty \\\\)</span>, the obtained upper bounds for <i>φ</i>-mixing random variables are of order <i>O</i>(<i>n</i><sup><i>−</i>1<i>/</i>2</sup>). In addition, we refine the previously known upper bounds of order <i>O</i>((<i>m</i> + 1)<sup>1+<i>δ</i></sup><i>L</i><sub>2+<i>δ,n</i></sub>), where <i>L</i><sub>2+<i>δ,n</i></sub> is the Lyapunov fraction of order 2 + <i>δ</i>, for <i>m</i>-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-023-09612-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-023-09612-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On normal approximation for φ-mixing and m-dependent random variables
In this paper, we estimate the difference |Eh(Zn) −Eh(Y)| between the expectations of real finite Lipschitz function h of the sum Zn = (X1 + ⋯ + Xn)/Bn, where \({B}_{n}^{2}\) = E(X1 + ⋯ + Xn)2> 0, and a standard normal random variable Y, where real centered random variables X1,X2,… satisfy the φ-mixing condition, defined between the “past” and “ future”, or are m-dependent. In particular cases, under the condition \({\sum }_{r=1}^{\infty }r\varphi (r)<\infty \) or \({\sum }_{r=1}^{\infty }{r\varphi }^{1/2}(r)<\infty \), the obtained upper bounds for φ-mixing random variables are of order O(n−1/2). In addition, we refine the previously known upper bounds of order O((m + 1)1+δL2+δ,n), where L2+δ,n is the Lyapunov fraction of order 2 + δ, for m-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.