φ-混合和m-相关随机变量的正态逼近

Pub Date : 2023-12-05 DOI:10.1007/s10986-023-09612-0
Jonas Kazys Sunklodas
{"title":"φ-混合和m-相关随机变量的正态逼近","authors":"Jonas Kazys Sunklodas","doi":"10.1007/s10986-023-09612-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we estimate the difference |<b>E</b><i>h</i>(<i>Z</i><sub><i>n</i></sub>) <i>−</i> <b>E</b><i>h</i>(<i>Y</i>)<i>|</i> between the expectations of real finite Lipschitz function <i>h</i> of the sum <i>Z</i><sub><i>n</i></sub> = (<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<i>/B</i><sub><i>n</i></sub>, where <span>\\({B}_{n}^{2}\\)</span> = <b>E</b>(<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<sup>2</sup> <i>&gt;</i> 0, and a standard normal random variable <i>Y</i>, where real centered random variables <i>X</i><sub>1</sub><i>,X</i><sub>2</sub><i>,</i>… satisfy the <i>φ</i>-mixing condition, defined between the “past” and “ future”, or are <i>m</i>-dependent. In particular cases, under the condition <span>\\({\\sum }_{r=1}^{\\infty }r\\varphi (r)&lt;\\infty \\)</span> or <span>\\({\\sum }_{r=1}^{\\infty }{r\\varphi }^{1/2}(r)&lt;\\infty \\)</span>, the obtained upper bounds for <i>φ</i>-mixing random variables are of order <i>O</i>(<i>n</i><sup><i>−</i>1<i>/</i>2</sup>). In addition, we refine the previously known upper bounds of order <i>O</i>((<i>m</i> + 1)<sup>1+<i>δ</i></sup><i>L</i><sub>2+<i>δ,n</i></sub>), where <i>L</i><sub>2+<i>δ,n</i></sub> is the Lyapunov fraction of order 2 + <i>δ</i>, for <i>m</i>-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On normal approximation for φ-mixing and m-dependent random variables\",\"authors\":\"Jonas Kazys Sunklodas\",\"doi\":\"10.1007/s10986-023-09612-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we estimate the difference |<b>E</b><i>h</i>(<i>Z</i><sub><i>n</i></sub>) <i>−</i> <b>E</b><i>h</i>(<i>Y</i>)<i>|</i> between the expectations of real finite Lipschitz function <i>h</i> of the sum <i>Z</i><sub><i>n</i></sub> = (<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<i>/B</i><sub><i>n</i></sub>, where <span>\\\\({B}_{n}^{2}\\\\)</span> = <b>E</b>(<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<sup>2</sup> <i>&gt;</i> 0, and a standard normal random variable <i>Y</i>, where real centered random variables <i>X</i><sub>1</sub><i>,X</i><sub>2</sub><i>,</i>… satisfy the <i>φ</i>-mixing condition, defined between the “past” and “ future”, or are <i>m</i>-dependent. In particular cases, under the condition <span>\\\\({\\\\sum }_{r=1}^{\\\\infty }r\\\\varphi (r)&lt;\\\\infty \\\\)</span> or <span>\\\\({\\\\sum }_{r=1}^{\\\\infty }{r\\\\varphi }^{1/2}(r)&lt;\\\\infty \\\\)</span>, the obtained upper bounds for <i>φ</i>-mixing random variables are of order <i>O</i>(<i>n</i><sup><i>−</i>1<i>/</i>2</sup>). In addition, we refine the previously known upper bounds of order <i>O</i>((<i>m</i> + 1)<sup>1+<i>δ</i></sup><i>L</i><sub>2+<i>δ,n</i></sub>), where <i>L</i><sub>2+<i>δ,n</i></sub> is the Lyapunov fraction of order 2 + <i>δ</i>, for <i>m</i>-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-023-09612-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-023-09612-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们估计了和Zn = (X1 +⋯⋯+ Xn)/Bn的实有限Lipschitz函数h的期望之间的差|Eh(Zn)−Eh(Y)|,其中\({B}_{n}^{2}\) = E(X1 +⋯+ Xn)2 &gt;0和标准正态随机变量Y,其中实中心随机变量X1,X2,…满足φ-混合条件,定义在“过去”和“未来”之间,或者与m相关。在特殊情况下,在\({\sum }_{r=1}^{\infty }r\varphi (r)<\infty \)或\({\sum }_{r=1}^{\infty }{r\varphi }^{1/2}(r)<\infty \)条件下,φ-混合随机变量的上界为O(n−1/2)阶。此外,我们改进了先前已知的阶O((m + 1)1+δL2+δ,n)的上界,其中L2+δ,n是阶2+δ的Lyapunov分数,对于m相关随机变量,补充了显式常数。我们还分别介绍了独立rv的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On normal approximation for φ-mixing and m-dependent random variables

In this paper, we estimate the difference |Eh(Zn) Eh(Y)| between the expectations of real finite Lipschitz function h of the sum Zn = (X1 + ⋯ + Xn)/Bn, where \({B}_{n}^{2}\) = E(X1 + ⋯ + Xn)2 > 0, and a standard normal random variable Y, where real centered random variables X1,X2,… satisfy the φ-mixing condition, defined between the “past” and “ future”, or are m-dependent. In particular cases, under the condition \({\sum }_{r=1}^{\infty }r\varphi (r)<\infty \) or \({\sum }_{r=1}^{\infty }{r\varphi }^{1/2}(r)<\infty \), the obtained upper bounds for φ-mixing random variables are of order O(n1/2). In addition, we refine the previously known upper bounds of order O((m + 1)1+δL2+δ,n), where L2+δ,n is the Lyapunov fraction of order 2 + δ, for m-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信