{"title":"DNA 氧化损伤:体外果糖的诱导作用和过氧化氢的增强作用","authors":"Kaoru Midorikawa , Kokoro Kobayashi , Shinya Kato , Shosuke Kawanishi , Hatasu Kobayashi , Shinji Oikawa , Mariko Murata","doi":"10.1016/j.mrgentox.2023.503719","DOIUrl":null,"url":null,"abstract":"<div><p>Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H<sub>2</sub>O<sub>2</sub>. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H<sub>2</sub>O<sub>2</sub> enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H<sub>2</sub>O<sub>2</sub>-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"893 ","pages":"Article 503719"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1383571823001377/pdfft?md5=366d6e8e7fd41824a49d9c535ffb2158&pid=1-s2.0-S1383571823001377-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Oxidative DNA damage: Induction by fructose, in vitro, and its enhancement by hydrogen peroxide\",\"authors\":\"Kaoru Midorikawa , Kokoro Kobayashi , Shinya Kato , Shosuke Kawanishi , Hatasu Kobayashi , Shinji Oikawa , Mariko Murata\",\"doi\":\"10.1016/j.mrgentox.2023.503719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H<sub>2</sub>O<sub>2</sub>. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H<sub>2</sub>O<sub>2</sub> enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H<sub>2</sub>O<sub>2</sub>-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"893 \",\"pages\":\"Article 503719\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1383571823001377/pdfft?md5=366d6e8e7fd41824a49d9c535ffb2158&pid=1-s2.0-S1383571823001377-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571823001377\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571823001377","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
蔗糖和高果糖玉米糖浆由几乎等量的葡萄糖和果糖组成。随着高果糖玉米糖浆在食品工业中的使用,果糖的消费量急剧增加,而果糖可能是一种肿瘤促进剂。我们研究了果糖在有 Cu(II)存在、添加或不添加 H2O2 的情况下诱导的 DNA 氧化损伤。在分离的 DNA 中,果糖诱导 Cu(II)介导的 DNA 损伤(包括 8-氧代-7,8-二氢-2′-脱氧鸟苷(8-oxodG)的形成)的程度高于葡萄糖,而 H2O2 会增强这种损伤。在培养的人体细胞中,果糖和产生 H2O2 的葡萄糖氧化酶处理后,8-oxodG 的形成显著增加。果糖可能在 DNA 氧化损伤中发挥了重要作用,这表明果糖参与致癌的可能机制。
Oxidative DNA damage: Induction by fructose, in vitro, and its enhancement by hydrogen peroxide
Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H2O2. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H2O2 enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H2O2-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.