{"title":"针对 fMRI 数据的矩阵因式分解性能评估。","authors":"Yusuke Endo;Koujin Takeda","doi":"10.1162/neco_a_01628","DOIUrl":null,"url":null,"abstract":"A hypothesis in the study of the brain is that sparse coding is realized in information representation of external stimuli, which has been experimentally confirmed for visual stimulus recently. However, unlike the specific functional region in the brain, sparse coding in information processing in the whole brain has not been clarified sufficiently. In this study, we investigate the validity of sparse coding in the whole human brain by applying various matrix factorization methods to functional magnetic resonance imaging data of neural activities in the brain. The result suggests the sparse coding hypothesis in information representation in the whole human brain, because extracted features from the sparse matrix factorization (MF) method, sparse principal component analysis (SparsePCA), or method of optimal directions (MOD) under a high sparsity setting or an approximate sparse MF method, fast independent component analysis (FastICA), can classify external visual stimuli more accurately than the nonsparse MF method or sparse MF method under a low sparsity setting.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 1","pages":"128-150"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Matrix Factorization for fMRI Data\",\"authors\":\"Yusuke Endo;Koujin Takeda\",\"doi\":\"10.1162/neco_a_01628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hypothesis in the study of the brain is that sparse coding is realized in information representation of external stimuli, which has been experimentally confirmed for visual stimulus recently. However, unlike the specific functional region in the brain, sparse coding in information processing in the whole brain has not been clarified sufficiently. In this study, we investigate the validity of sparse coding in the whole human brain by applying various matrix factorization methods to functional magnetic resonance imaging data of neural activities in the brain. The result suggests the sparse coding hypothesis in information representation in the whole human brain, because extracted features from the sparse matrix factorization (MF) method, sparse principal component analysis (SparsePCA), or method of optimal directions (MOD) under a high sparsity setting or an approximate sparse MF method, fast independent component analysis (FastICA), can classify external visual stimuli more accurately than the nonsparse MF method or sparse MF method under a low sparsity setting.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 1\",\"pages\":\"128-150\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535072/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535072/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Performance Evaluation of Matrix Factorization for fMRI Data
A hypothesis in the study of the brain is that sparse coding is realized in information representation of external stimuli, which has been experimentally confirmed for visual stimulus recently. However, unlike the specific functional region in the brain, sparse coding in information processing in the whole brain has not been clarified sufficiently. In this study, we investigate the validity of sparse coding in the whole human brain by applying various matrix factorization methods to functional magnetic resonance imaging data of neural activities in the brain. The result suggests the sparse coding hypothesis in information representation in the whole human brain, because extracted features from the sparse matrix factorization (MF) method, sparse principal component analysis (SparsePCA), or method of optimal directions (MOD) under a high sparsity setting or an approximate sparse MF method, fast independent component analysis (FastICA), can classify external visual stimuli more accurately than the nonsparse MF method or sparse MF method under a low sparsity setting.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.