{"title":"RASSF1A通过促进FoxO3a和抑制Nrf2/TXNRD1信号通路来提高鼻咽癌的放射敏感性。","authors":"Yishimei Si, Linghan Meng, Bingwen Zhang, Yuanqing Wu, Qianming Du, Jinjing Xu, Jianwei Qi","doi":"10.4149/neo_2023_221122N1124","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.</p>","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":"70 5","pages":"633-644"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RASSF1A promotes radiosensitivity in nasopharyngeal carcinoma by promoting FoxO3a and inhibiting the Nrf2/TXNRD1 signaling pathway.\",\"authors\":\"Yishimei Si, Linghan Meng, Bingwen Zhang, Yuanqing Wu, Qianming Du, Jinjing Xu, Jianwei Qi\",\"doi\":\"10.4149/neo_2023_221122N1124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.</p>\",\"PeriodicalId\":19266,\"journal\":{\"name\":\"Neoplasma\",\"volume\":\"70 5\",\"pages\":\"633-644\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4149/neo_2023_221122N1124\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2023_221122N1124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
RASSF1A promotes radiosensitivity in nasopharyngeal carcinoma by promoting FoxO3a and inhibiting the Nrf2/TXNRD1 signaling pathway.
Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.