David Uribe, Cyrille Baudouin, Camille Durand, Régis Bigot
{"title":"利用数字孪生模型的代理模型对单次冷镦进行预测控制","authors":"David Uribe, Cyrille Baudouin, Camille Durand, Régis Bigot","doi":"10.1007/s12289-023-01803-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based surrogate model for a one-blow cold upsetting process in copper billets. This model effectively addresses the issue by accurately forecasting energy setpoints, billet geometry changes, and deformation fields following a single forging operation. It utilizes Bézier curves to parametrically capture billet geometries and employs POD for concise deformation field representation. With a substantial database of 36,000 entries from 60 predictive numerical simulations using FORGE® software, the surrogate model is trained using a multilayer perceptron artificial neural network (MLP ANN) featuring 300 neurons across 3 hidden layers using the Keras API within the TensorFlow framework in Python. Model validation against experimental and numerical data underscores its precision in predicting energy setpoints, geometry changes, and deformation fields. This advancement holds the potential for enhancing real-time process control and optimization, facilitating the development of a digital twin for the process.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin\",\"authors\":\"David Uribe, Cyrille Baudouin, Camille Durand, Régis Bigot\",\"doi\":\"10.1007/s12289-023-01803-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based surrogate model for a one-blow cold upsetting process in copper billets. This model effectively addresses the issue by accurately forecasting energy setpoints, billet geometry changes, and deformation fields following a single forging operation. It utilizes Bézier curves to parametrically capture billet geometries and employs POD for concise deformation field representation. With a substantial database of 36,000 entries from 60 predictive numerical simulations using FORGE® software, the surrogate model is trained using a multilayer perceptron artificial neural network (MLP ANN) featuring 300 neurons across 3 hidden layers using the Keras API within the TensorFlow framework in Python. Model validation against experimental and numerical data underscores its precision in predicting energy setpoints, geometry changes, and deformation fields. This advancement holds the potential for enhancing real-time process control and optimization, facilitating the development of a digital twin for the process.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01803-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01803-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin
In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based surrogate model for a one-blow cold upsetting process in copper billets. This model effectively addresses the issue by accurately forecasting energy setpoints, billet geometry changes, and deformation fields following a single forging operation. It utilizes Bézier curves to parametrically capture billet geometries and employs POD for concise deformation field representation. With a substantial database of 36,000 entries from 60 predictive numerical simulations using FORGE® software, the surrogate model is trained using a multilayer perceptron artificial neural network (MLP ANN) featuring 300 neurons across 3 hidden layers using the Keras API within the TensorFlow framework in Python. Model validation against experimental and numerical data underscores its precision in predicting energy setpoints, geometry changes, and deformation fields. This advancement holds the potential for enhancing real-time process control and optimization, facilitating the development of a digital twin for the process.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.