多元偏态-正态- tukey -h分布

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Sagnik Mondal, Marc G. Genton
{"title":"多元偏态-正态- tukey -h分布","authors":"Sagnik Mondal,&nbsp;Marc G. Genton","doi":"10.1016/j.jmva.2023.105260","DOIUrl":null,"url":null,"abstract":"<div><p><span>We introduce a new family of multivariate distributions by taking the component-wise Tukey-</span><span><math><mi>h</mi></math></span> transformation of a random vector following a skew-normal distribution with an alternative parameterization. The proposed distribution is named the skew-normal-Tukey-<span><math><mi>h</mi></math></span> distribution and is an extension of the skew-normal distribution for handling heavy-tailed data. We compare this proposed distribution to the skew-<span><math><mi>t</mi></math></span><span><span> distribution, which is another extension of the skew-normal distribution for modeling tail-thickness, and demonstrate that when there are substantial differences in marginal kurtosis, the proposed distribution is more appropriate. Moreover, we derive many appealing </span>stochastic properties of the proposed distribution and provide a methodology for the estimation of the parameters that can be applied to large dimensions. Using simulations, as well as a wine and a wind speed data application, we illustrate how to draw inferences based on the multivariate skew-normal-Tukey-</span><span><math><mi>h</mi></math></span> distribution.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"200 ","pages":"Article 105260"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multivariate skew-normal-Tukey-h distribution\",\"authors\":\"Sagnik Mondal,&nbsp;Marc G. Genton\",\"doi\":\"10.1016/j.jmva.2023.105260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We introduce a new family of multivariate distributions by taking the component-wise Tukey-</span><span><math><mi>h</mi></math></span> transformation of a random vector following a skew-normal distribution with an alternative parameterization. The proposed distribution is named the skew-normal-Tukey-<span><math><mi>h</mi></math></span> distribution and is an extension of the skew-normal distribution for handling heavy-tailed data. We compare this proposed distribution to the skew-<span><math><mi>t</mi></math></span><span><span> distribution, which is another extension of the skew-normal distribution for modeling tail-thickness, and demonstrate that when there are substantial differences in marginal kurtosis, the proposed distribution is more appropriate. Moreover, we derive many appealing </span>stochastic properties of the proposed distribution and provide a methodology for the estimation of the parameters that can be applied to large dimensions. Using simulations, as well as a wine and a wind speed data application, we illustrate how to draw inferences based on the multivariate skew-normal-Tukey-</span><span><math><mi>h</mi></math></span> distribution.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"200 \",\"pages\":\"Article 105260\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001069\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个新的多元分布的家族,通过采取一个随机向量的组件明智的Tukey-h变换遵循一个偏态分布与一个可选的参数化。所提出的分布被命名为偏态-正态- tukey -h分布,是用于处理重尾数据的偏态-正态分布的扩展。我们将该分布与斜态t分布进行了比较,斜态t分布是斜态正态分布的另一种扩展,用于建模尾部厚度,并证明当边际峰度存在显著差异时,所提出的分布更合适。此外,我们还推导了所提出的分布的许多吸引人的随机特性,并提供了一种可以应用于大维度的参数估计方法。通过模拟,以及葡萄酒和风速数据应用,我们说明了如何根据多元偏态-正态- tukey -h分布得出推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multivariate skew-normal-Tukey-h distribution

We introduce a new family of multivariate distributions by taking the component-wise Tukey-h transformation of a random vector following a skew-normal distribution with an alternative parameterization. The proposed distribution is named the skew-normal-Tukey-h distribution and is an extension of the skew-normal distribution for handling heavy-tailed data. We compare this proposed distribution to the skew-t distribution, which is another extension of the skew-normal distribution for modeling tail-thickness, and demonstrate that when there are substantial differences in marginal kurtosis, the proposed distribution is more appropriate. Moreover, we derive many appealing stochastic properties of the proposed distribution and provide a methodology for the estimation of the parameters that can be applied to large dimensions. Using simulations, as well as a wine and a wind speed data application, we illustrate how to draw inferences based on the multivariate skew-normal-Tukey-h distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信