整合多组学数据,分析外分泌胰腺CTSH基因参与1型糖尿病的潜在致病机制。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zerun Song, Shuai Li, Zhenwei Shang, Wenhua Lv, Xiangshu Cheng, Xin Meng, Rui Chen, Shuhao Zhang, Ruijie Zhang
{"title":"整合多组学数据,分析外分泌胰腺CTSH基因参与1型糖尿病的潜在致病机制。","authors":"Zerun Song, Shuai Li, Zhenwei Shang, Wenhua Lv, Xiangshu Cheng, Xin Meng, Rui Chen, Shuhao Zhang, Ruijie Zhang","doi":"10.1093/bfgp/elad052","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing pancreatic islet beta cells. Despite significant advancements, the precise pathogenesis of the disease remains unknown. This work integrated data from expression quantitative trait locus (eQTL) studies with Genome wide association study (GWAS) summary data of T1D and single-cell transcriptome data to investigate the potential pathogenic mechanisms of the CTSH gene involved in T1D in exocrine pancreas. Using the summary data-based Mendelian randomization (SMR) approach, we obtained four potential causative genes associated with T1D: BTN3A2, PGAP3, SMARCE1 and CTSH. To further investigate these genes'roles in T1D development, we validated them using a scRNA-seq dataset from pancreatic tissues of both T1D patients and healthy controls. The analysis showed a significantly high expression of the CTSH gene in T1D acinar cells, whereas the other three genes showed no significant changes in the scRNA-seq data. Moreover, single-cell WGCNA analysis revealed the strongest positive correlation between the module containing CTSH and T1D. In addition, we found cellular ligand-receptor interactions between the acinar cells and different cell types, especially ductal cells. Finally, based on functional enrichment analysis, we hypothesized that the CTSH gene in the exocrine pancreas enhances the antiviral response, leading to the overexpression of pro-inflammatory cytokines and the development of an inflammatory microenvironment. This process promotes β cells injury and ultimately the development of T1D. Our findings offer insights into the underlying pathogenic mechanisms of T1D.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating multi-omics data to analyze the potential pathogenic mechanism of CTSH gene involved in type 1 diabetes in the exocrine pancreas.\",\"authors\":\"Zerun Song, Shuai Li, Zhenwei Shang, Wenhua Lv, Xiangshu Cheng, Xin Meng, Rui Chen, Shuhao Zhang, Ruijie Zhang\",\"doi\":\"10.1093/bfgp/elad052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing pancreatic islet beta cells. Despite significant advancements, the precise pathogenesis of the disease remains unknown. This work integrated data from expression quantitative trait locus (eQTL) studies with Genome wide association study (GWAS) summary data of T1D and single-cell transcriptome data to investigate the potential pathogenic mechanisms of the CTSH gene involved in T1D in exocrine pancreas. Using the summary data-based Mendelian randomization (SMR) approach, we obtained four potential causative genes associated with T1D: BTN3A2, PGAP3, SMARCE1 and CTSH. To further investigate these genes'roles in T1D development, we validated them using a scRNA-seq dataset from pancreatic tissues of both T1D patients and healthy controls. The analysis showed a significantly high expression of the CTSH gene in T1D acinar cells, whereas the other three genes showed no significant changes in the scRNA-seq data. Moreover, single-cell WGCNA analysis revealed the strongest positive correlation between the module containing CTSH and T1D. In addition, we found cellular ligand-receptor interactions between the acinar cells and different cell types, especially ductal cells. Finally, based on functional enrichment analysis, we hypothesized that the CTSH gene in the exocrine pancreas enhances the antiviral response, leading to the overexpression of pro-inflammatory cytokines and the development of an inflammatory microenvironment. This process promotes β cells injury and ultimately the development of T1D. Our findings offer insights into the underlying pathogenic mechanisms of T1D.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elad052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

1型糖尿病(T1D)是一种由产生胰岛素的胰岛细胞破坏引起的自身免疫性疾病。尽管取得了重大进展,但该疾病的确切发病机制仍不清楚。本研究结合表达数量性状位点(eQTL)研究数据、T1D基因组全关联研究(GWAS)汇总数据和单细胞转录组数据,探讨外分泌胰腺中CTSH基因参与T1D的潜在致病机制。采用基于汇总数据的孟德尔随机化(SMR)方法,我们获得了4个与T1D相关的潜在致病基因:BTN3A2、PGAP3、SMARCE1和CTSH。为了进一步研究这些基因在T1D发展中的作用,我们使用来自T1D患者和健康对照者胰腺组织的scRNA-seq数据集验证了它们。分析显示CTSH基因在T1D腺泡细胞中显著高表达,而其他三个基因在scRNA-seq数据中没有显著变化。此外,单细胞WGCNA分析显示,含有CTSH的模块与T1D之间存在最强的正相关。此外,我们发现腺泡细胞与不同类型的细胞,特别是导管细胞之间存在细胞配体-受体相互作用。最后,基于功能富集分析,我们假设外分泌胰腺中的CTSH基因增强了抗病毒反应,导致促炎细胞因子的过度表达和炎症微环境的形成。这一过程促进β细胞损伤并最终导致T1D的发生。我们的研究结果为T1D的潜在致病机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating multi-omics data to analyze the potential pathogenic mechanism of CTSH gene involved in type 1 diabetes in the exocrine pancreas.

Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing pancreatic islet beta cells. Despite significant advancements, the precise pathogenesis of the disease remains unknown. This work integrated data from expression quantitative trait locus (eQTL) studies with Genome wide association study (GWAS) summary data of T1D and single-cell transcriptome data to investigate the potential pathogenic mechanisms of the CTSH gene involved in T1D in exocrine pancreas. Using the summary data-based Mendelian randomization (SMR) approach, we obtained four potential causative genes associated with T1D: BTN3A2, PGAP3, SMARCE1 and CTSH. To further investigate these genes'roles in T1D development, we validated them using a scRNA-seq dataset from pancreatic tissues of both T1D patients and healthy controls. The analysis showed a significantly high expression of the CTSH gene in T1D acinar cells, whereas the other three genes showed no significant changes in the scRNA-seq data. Moreover, single-cell WGCNA analysis revealed the strongest positive correlation between the module containing CTSH and T1D. In addition, we found cellular ligand-receptor interactions between the acinar cells and different cell types, especially ductal cells. Finally, based on functional enrichment analysis, we hypothesized that the CTSH gene in the exocrine pancreas enhances the antiviral response, leading to the overexpression of pro-inflammatory cytokines and the development of an inflammatory microenvironment. This process promotes β cells injury and ultimately the development of T1D. Our findings offer insights into the underlying pathogenic mechanisms of T1D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信