锌掺杂MnOx纳米线具有丰富的晶体缺陷和可调的小截面,用于超级电容器的优化火山型性能。

IF 4.703 3区 材料科学
Geyse A. C. Ribeiro, Scarllett L. S. de Lima, Karolinne E. R. Santos, Jhonatam P. Mendonça, Pedro Macena, Emanuel C. Pessanha, Thallis C. Cordeiro, Jules Gardener, Guilhermo Solórzano, Jéssica E. S. Fonsaca, Sergio H. Domingues, Clenilton C. dos Santos, André H. B. Dourado, Auro A. Tanaka, Anderson G. M. da Silva, Marco A. S. Garcia
{"title":"锌掺杂MnOx纳米线具有丰富的晶体缺陷和可调的小截面,用于超级电容器的优化火山型性能。","authors":"Geyse A. C. Ribeiro,&nbsp;Scarllett L. S. de Lima,&nbsp;Karolinne E. R. Santos,&nbsp;Jhonatam P. Mendonça,&nbsp;Pedro Macena,&nbsp;Emanuel C. Pessanha,&nbsp;Thallis C. Cordeiro,&nbsp;Jules Gardener,&nbsp;Guilhermo Solórzano,&nbsp;Jéssica E. S. Fonsaca,&nbsp;Sergio H. Domingues,&nbsp;Clenilton C. dos Santos,&nbsp;André H. B. Dourado,&nbsp;Auro A. Tanaka,&nbsp;Anderson G. M. da Silva,&nbsp;Marco A. S. Garcia","doi":"10.1186/s11671-023-03933-2","DOIUrl":null,"url":null,"abstract":"<div><p>MnO<sub>x</sub>-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO<sub>x</sub> nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO<sub>x</sub> nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g<sup>−1</sup> at a charge/discharge current density of 1.0 A g<sup>−1</sup> in a 2.0 mol L<sup>−1</sup> KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors\",\"authors\":\"Geyse A. C. Ribeiro,&nbsp;Scarllett L. S. de Lima,&nbsp;Karolinne E. R. Santos,&nbsp;Jhonatam P. Mendonça,&nbsp;Pedro Macena,&nbsp;Emanuel C. Pessanha,&nbsp;Thallis C. Cordeiro,&nbsp;Jules Gardener,&nbsp;Guilhermo Solórzano,&nbsp;Jéssica E. S. Fonsaca,&nbsp;Sergio H. Domingues,&nbsp;Clenilton C. dos Santos,&nbsp;André H. B. Dourado,&nbsp;Auro A. Tanaka,&nbsp;Anderson G. M. da Silva,&nbsp;Marco A. S. Garcia\",\"doi\":\"10.1186/s11671-023-03933-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MnO<sub>x</sub>-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO<sub>x</sub> nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO<sub>x</sub> nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g<sup>−1</sup> at a charge/discharge current density of 1.0 A g<sup>−1</sup> in a 2.0 mol L<sup>−1</sup> KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.</p></div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-023-03933-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03933-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

mnox基纳米材料具有高比容量、低毒性、低成本等优点,是一种很有前景的大规模电化学储能材料。然而,它们的缓慢扩散动力学仍然具有挑战性,限制了实际应用。本文报道了一种简单的一锅法制备出缺陷丰富、小截面可调的掺锌MnOx纳米线,并表现出优异的比电容。更具体地说,基于简单的水热策略,锌位点可以均匀地分散在α-MnOx纳米线结构中,作为组成(0.3,2.1,4.3和7.6 wt.% Zn)的函数。这种方法避免了合成过程中不同晶相的形成。可重复性方法制备出均匀的纳米线,且截面尺寸随锌含量的增加而减小。令人惊讶的是,我们发现存储性能与Zn负载之间存在火山型关系。在这种情况下,我们证明了加入2.1 wt.% Zn可以获得最高性能的材料,在2.0 mol L-1的KOH电解质中,在1.0 a g-1的充放电电流密度下,表现出1082.2 F.g-1的显着比电容。优化后的材料也改善了混合超级电容器的性能。因此,本文提出的结果为通过简单的一步方法制备缺陷和受控纳米材料用于储能应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors

Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors

MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g−1 at a charge/discharge current density of 1.0 A g−1 in a 2.0 mol L−1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信