快速和自适应动态图到动态图的转换。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2023-11-17 eCollection Date: 2023-01-01 DOI:10.3389/fdata.2023.1274135
Lei Zhang, Zhiqian Chen, Chang-Tien Lu, Liang Zhao
{"title":"快速和自适应动态图到动态图的转换。","authors":"Lei Zhang, Zhiqian Chen, Chang-Tien Lu, Liang Zhao","doi":"10.3389/fdata.2023.1274135","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous networks in the real world change with time, producing dynamic graphs such as human mobility networks and brain networks. Typically, the \"dynamics <b>on</b> graphs\" (e.g., changing node attribute values) are visible, and they may be connected to and suggestive of the \"dynamics <b>of</b> graphs\" (e.g., evolution of the graph topology). Due to two fundamental obstacles, modeling and mapping between them have not been thoroughly explored: (1) the difficulty of developing a highly adaptable model without solid hypotheses and (2) the ineffectiveness and slowness of processing data with varying granularity. To solve these issues, we offer a novel scalable deep echo-state graph dynamics encoder for networks with significant temporal duration and dimensions. A novel neural architecture search (NAS) technique is then proposed and tailored for the deep echo-state encoder to ensure strong learnability. Extensive experiments on synthetic and actual application data illustrate the proposed method's exceptional effectiveness and efficiency.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"6 ","pages":"1274135"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation.\",\"authors\":\"Lei Zhang, Zhiqian Chen, Chang-Tien Lu, Liang Zhao\",\"doi\":\"10.3389/fdata.2023.1274135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous networks in the real world change with time, producing dynamic graphs such as human mobility networks and brain networks. Typically, the \\\"dynamics <b>on</b> graphs\\\" (e.g., changing node attribute values) are visible, and they may be connected to and suggestive of the \\\"dynamics <b>of</b> graphs\\\" (e.g., evolution of the graph topology). Due to two fundamental obstacles, modeling and mapping between them have not been thoroughly explored: (1) the difficulty of developing a highly adaptable model without solid hypotheses and (2) the ineffectiveness and slowness of processing data with varying granularity. To solve these issues, we offer a novel scalable deep echo-state graph dynamics encoder for networks with significant temporal duration and dimensions. A novel neural architecture search (NAS) technique is then proposed and tailored for the deep echo-state encoder to ensure strong learnability. Extensive experiments on synthetic and actual application data illustrate the proposed method's exceptional effectiveness and efficiency.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"6 \",\"pages\":\"1274135\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2023.1274135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2023.1274135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现实世界中的许多网络随着时间的变化而变化,产生动态图形,如人类移动网络和大脑网络。通常,“图上的动态”(例如,改变节点属性值)是可见的,并且它们可能与“图的动态”(例如,图拓扑的演化)相连接并暗示。由于两个基本障碍,它们之间的建模和映射没有得到彻底的探索:(1)在没有坚实假设的情况下开发高适应性模型的困难;(2)处理不同粒度数据的低效和缓慢。为了解决这些问题,我们为具有显著时间持续时间和维度的网络提供了一种新颖的可扩展深度回声状态图动态编码器。然后,提出了一种新的神经结构搜索(NAS)技术,并针对深度回声状态编码器进行了定制,以确保强学习性。综合数据和实际应用数据的大量实验表明,该方法具有优异的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation.

Numerous networks in the real world change with time, producing dynamic graphs such as human mobility networks and brain networks. Typically, the "dynamics on graphs" (e.g., changing node attribute values) are visible, and they may be connected to and suggestive of the "dynamics of graphs" (e.g., evolution of the graph topology). Due to two fundamental obstacles, modeling and mapping between them have not been thoroughly explored: (1) the difficulty of developing a highly adaptable model without solid hypotheses and (2) the ineffectiveness and slowness of processing data with varying granularity. To solve these issues, we offer a novel scalable deep echo-state graph dynamics encoder for networks with significant temporal duration and dimensions. A novel neural architecture search (NAS) technique is then proposed and tailored for the deep echo-state encoder to ensure strong learnability. Extensive experiments on synthetic and actual application data illustrate the proposed method's exceptional effectiveness and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信