转录组学和蛋白质组学揭示了人肺微血管内皮细胞的性别差异。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-02-01 Epub Date: 2023-12-04 DOI:10.1152/physiolgenomics.00051.2023
Daria S Kostyunina, Nikolai V Pakhomov, Amina Jouida, Eugene Dillon, John A Baugh, Paul McLoughlin
{"title":"转录组学和蛋白质组学揭示了人肺微血管内皮细胞的性别差异。","authors":"Daria S Kostyunina, Nikolai V Pakhomov, Amina Jouida, Eugene Dillon, John A Baugh, Paul McLoughlin","doi":"10.1152/physiolgenomics.00051.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Marked sexual dimorphism is displayed in the onset and progression of pulmonary hypertension (PH). Females more commonly develop pulmonary arterial hypertension, yet females with pulmonary arterial hypertension and other types of PH have better survival than males. Pulmonary microvascular endothelial cells play a crucial role in pulmonary vascular remodeling and increased pulmonary vascular resistance in PH. Given this background, we hypothesized that there are sex differences in the pulmonary microvascular endothelium basally and in response to hypoxia that are independent of the sex hormone environment. Human pulmonary microvascular endothelial cells (HPMECs) from healthy male and female donors, cultured under physiological shear stress, were analyzed using RNA sequencing and label-free quantitative proteomics. Gene set enrichment analysis identified a number of sex-different pathways in both normoxia and hypoxia, including pathways that regulate cell proliferation. In vitro, the rate of proliferation in female HPMECs was lower than in male HPMECs, a finding that supports the omics results. Interestingly, thrombospondin-1, an inhibitor of proliferation, was more highly expressed in female cells than in male cells. These results demonstrate, for the first time, important differences between female and male HPMECs that persist in the absence of sex hormone differences and identify novel pathways for further investigation that may contribute to sexual dimorphism in pulmonary hypertensive diseases.<b>NEW & NOTEWORTHY</b> There is marked sexual dimorphism in the development and progression of pulmonary hypertension. We show differences in RNA and protein expression between female and male human pulmonary microvascular endothelial cells grown under conditions of physiological shear stress, which identify sex-different cellular pathways both in normoxia and hypoxia. Importantly, these differences were detected in the absence of sex hormone differences. The pathways identified may provide novel targets for the development of sex-specific therapies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomics and proteomics revealed sex differences in human pulmonary microvascular endothelial cells.\",\"authors\":\"Daria S Kostyunina, Nikolai V Pakhomov, Amina Jouida, Eugene Dillon, John A Baugh, Paul McLoughlin\",\"doi\":\"10.1152/physiolgenomics.00051.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marked sexual dimorphism is displayed in the onset and progression of pulmonary hypertension (PH). Females more commonly develop pulmonary arterial hypertension, yet females with pulmonary arterial hypertension and other types of PH have better survival than males. Pulmonary microvascular endothelial cells play a crucial role in pulmonary vascular remodeling and increased pulmonary vascular resistance in PH. Given this background, we hypothesized that there are sex differences in the pulmonary microvascular endothelium basally and in response to hypoxia that are independent of the sex hormone environment. Human pulmonary microvascular endothelial cells (HPMECs) from healthy male and female donors, cultured under physiological shear stress, were analyzed using RNA sequencing and label-free quantitative proteomics. Gene set enrichment analysis identified a number of sex-different pathways in both normoxia and hypoxia, including pathways that regulate cell proliferation. In vitro, the rate of proliferation in female HPMECs was lower than in male HPMECs, a finding that supports the omics results. Interestingly, thrombospondin-1, an inhibitor of proliferation, was more highly expressed in female cells than in male cells. These results demonstrate, for the first time, important differences between female and male HPMECs that persist in the absence of sex hormone differences and identify novel pathways for further investigation that may contribute to sexual dimorphism in pulmonary hypertensive diseases.<b>NEW & NOTEWORTHY</b> There is marked sexual dimorphism in the development and progression of pulmonary hypertension. We show differences in RNA and protein expression between female and male human pulmonary microvascular endothelial cells grown under conditions of physiological shear stress, which identify sex-different cellular pathways both in normoxia and hypoxia. Importantly, these differences were detected in the absence of sex hormone differences. The pathways identified may provide novel targets for the development of sex-specific therapies.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00051.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00051.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在肺动脉高压(PH)的发病和发展过程中表现出明显的两性二态性。女性更常发生肺动脉高压(PAH),但患有PAH和其他类型PH的女性比男性生存率更高。肺微血管内皮细胞在肺血管重构和肺血管阻力增加中起着至关重要的作用。在此背景下,我们假设肺微血管内皮存在性别差异,并在缺氧反应中独立于性激素环境。采用RNA测序和无标记定量蛋白质组学技术对生理剪切胁迫下培养的健康男性和女性供体人肺微血管内皮细胞(hpmes)进行了分析。基因集富集分析确定了在常氧和缺氧条件下许多性别不同的途径,包括调节细胞增殖的途径。在体外,女性HPMECs的增殖率低于男性HPMECs,这一发现支持了组学结果。有趣的是,血小板反应蛋白1,一种增殖抑制剂,在女性细胞中比在男性细胞中表达得更高。这些结果首次证明了在没有性激素差异的情况下,女性和男性hpmec之间存在重要差异,并为进一步研究可能导致肺动脉高压疾病性别二态性的新途径确定了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomics and proteomics revealed sex differences in human pulmonary microvascular endothelial cells.

Marked sexual dimorphism is displayed in the onset and progression of pulmonary hypertension (PH). Females more commonly develop pulmonary arterial hypertension, yet females with pulmonary arterial hypertension and other types of PH have better survival than males. Pulmonary microvascular endothelial cells play a crucial role in pulmonary vascular remodeling and increased pulmonary vascular resistance in PH. Given this background, we hypothesized that there are sex differences in the pulmonary microvascular endothelium basally and in response to hypoxia that are independent of the sex hormone environment. Human pulmonary microvascular endothelial cells (HPMECs) from healthy male and female donors, cultured under physiological shear stress, were analyzed using RNA sequencing and label-free quantitative proteomics. Gene set enrichment analysis identified a number of sex-different pathways in both normoxia and hypoxia, including pathways that regulate cell proliferation. In vitro, the rate of proliferation in female HPMECs was lower than in male HPMECs, a finding that supports the omics results. Interestingly, thrombospondin-1, an inhibitor of proliferation, was more highly expressed in female cells than in male cells. These results demonstrate, for the first time, important differences between female and male HPMECs that persist in the absence of sex hormone differences and identify novel pathways for further investigation that may contribute to sexual dimorphism in pulmonary hypertensive diseases.NEW & NOTEWORTHY There is marked sexual dimorphism in the development and progression of pulmonary hypertension. We show differences in RNA and protein expression between female and male human pulmonary microvascular endothelial cells grown under conditions of physiological shear stress, which identify sex-different cellular pathways both in normoxia and hypoxia. Importantly, these differences were detected in the absence of sex hormone differences. The pathways identified may provide novel targets for the development of sex-specific therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信