{"title":"直径解释了树木非光合器官的瞬时分配","authors":"Renfei Chen","doi":"10.1016/j.ppees.2023.125763","DOIUrl":null,"url":null,"abstract":"<div><p>A central issue in plant ecology is exploring universal rules and the mechanisms under which photosynthetic energies are allocated to different organ parts. Until recently, prevalent studies focused on testing either optimal allocation theory or allometric allocation theory in predicting plant biomass partitioning patterns. However, paying much attention to the stable state prevents the development of new biomass allocation theories in transient time scales. Here, based on theories in transients and the allometric relationships in plant traits, I develop general theoretical models to study the transient perturbations of plant biomass allocated to non-photosynthetic organ parts. With both simulation and empirical approaches, I investigate the effect of plant stem diameter at breast height (DBH) on the variation of biomass allocation patterns during plant ontogeny. Results show that increases in DBH can mitigate the magnitude of the perturbations of plant biomass and biomass fractions allocated to both plant stem and root parts. The findings are robust when either deterministic or stochastic models are conducted. Moreover, empirical analyses from a large forest database in Eurasia consistently support the predictions from the theoretical frameworks. In this paper, I draw attention to the transient allocation pattern of plant biomass for non-photosynthetic organs, and I find the significant role of DBH. This work has important implications in both theoretical breakthroughs and practical applications. It not only provides the foundation to test new biomass allocation hypotheses but also directs agricultural and forest management to achieve stabilized yields.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1433831923000471/pdfft?md5=f7f0834e9ecf48860626d827fec31863&pid=1-s2.0-S1433831923000471-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Diameter explains transient allocation of non-photosynthetic organs in trees\",\"authors\":\"Renfei Chen\",\"doi\":\"10.1016/j.ppees.2023.125763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A central issue in plant ecology is exploring universal rules and the mechanisms under which photosynthetic energies are allocated to different organ parts. Until recently, prevalent studies focused on testing either optimal allocation theory or allometric allocation theory in predicting plant biomass partitioning patterns. However, paying much attention to the stable state prevents the development of new biomass allocation theories in transient time scales. Here, based on theories in transients and the allometric relationships in plant traits, I develop general theoretical models to study the transient perturbations of plant biomass allocated to non-photosynthetic organ parts. With both simulation and empirical approaches, I investigate the effect of plant stem diameter at breast height (DBH) on the variation of biomass allocation patterns during plant ontogeny. Results show that increases in DBH can mitigate the magnitude of the perturbations of plant biomass and biomass fractions allocated to both plant stem and root parts. The findings are robust when either deterministic or stochastic models are conducted. Moreover, empirical analyses from a large forest database in Eurasia consistently support the predictions from the theoretical frameworks. In this paper, I draw attention to the transient allocation pattern of plant biomass for non-photosynthetic organs, and I find the significant role of DBH. This work has important implications in both theoretical breakthroughs and practical applications. It not only provides the foundation to test new biomass allocation hypotheses but also directs agricultural and forest management to achieve stabilized yields.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1433831923000471/pdfft?md5=f7f0834e9ecf48860626d827fec31863&pid=1-s2.0-S1433831923000471-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1433831923000471\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1433831923000471","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Diameter explains transient allocation of non-photosynthetic organs in trees
A central issue in plant ecology is exploring universal rules and the mechanisms under which photosynthetic energies are allocated to different organ parts. Until recently, prevalent studies focused on testing either optimal allocation theory or allometric allocation theory in predicting plant biomass partitioning patterns. However, paying much attention to the stable state prevents the development of new biomass allocation theories in transient time scales. Here, based on theories in transients and the allometric relationships in plant traits, I develop general theoretical models to study the transient perturbations of plant biomass allocated to non-photosynthetic organ parts. With both simulation and empirical approaches, I investigate the effect of plant stem diameter at breast height (DBH) on the variation of biomass allocation patterns during plant ontogeny. Results show that increases in DBH can mitigate the magnitude of the perturbations of plant biomass and biomass fractions allocated to both plant stem and root parts. The findings are robust when either deterministic or stochastic models are conducted. Moreover, empirical analyses from a large forest database in Eurasia consistently support the predictions from the theoretical frameworks. In this paper, I draw attention to the transient allocation pattern of plant biomass for non-photosynthetic organs, and I find the significant role of DBH. This work has important implications in both theoretical breakthroughs and practical applications. It not only provides the foundation to test new biomass allocation hypotheses but also directs agricultural and forest management to achieve stabilized yields.