各向异性最小-最大理论:各向异性极小面和CMC面的存在性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guido De Philippis, Antonio De Rosa
{"title":"各向异性最小-最大理论:各向异性极小面和CMC面的存在性","authors":"Guido De Philippis,&nbsp;Antonio De Rosa","doi":"10.1002/cpa.22189","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n </mrow>\n <annotation>$\\hskip.001pt 3$</annotation>\n </semantics></math>–dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n </mrow>\n <annotation>$\\hskip.001pt 3$</annotation>\n </semantics></math>.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22189","citationCount":"0","resultStr":"{\"title\":\"The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces\",\"authors\":\"Guido De Philippis,&nbsp;Antonio De Rosa\",\"doi\":\"10.1002/cpa.22189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\hskip.001pt 3$</annotation>\\n </semantics></math>–dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\hskip.001pt 3$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22189\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22189","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了闭光滑三维黎曼流形中的椭圆积分具有恒定各向异性平均曲率的非平凡闭曲面的存在性。构造的最小-最大曲面是光滑的,最多有一个奇点。恒定各向异性平均曲率可以固定为任意实数。特别地,我们部分地解决了Allard在三维空间中的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces

The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces

We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth 3 $\hskip.001pt 3$ –dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension 3 $\hskip.001pt 3$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信