{"title":"各向异性最小-最大理论:各向异性极小面和CMC面的存在性","authors":"Guido De Philippis, Antonio De Rosa","doi":"10.1002/cpa.22189","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n </mrow>\n <annotation>$\\hskip.001pt 3$</annotation>\n </semantics></math>–dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n </mrow>\n <annotation>$\\hskip.001pt 3$</annotation>\n </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 7","pages":"3184-3226"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22189","citationCount":"0","resultStr":"{\"title\":\"The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces\",\"authors\":\"Guido De Philippis, Antonio De Rosa\",\"doi\":\"10.1002/cpa.22189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\hskip.001pt 3$</annotation>\\n </semantics></math>–dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\hskip.001pt 3$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 7\",\"pages\":\"3184-3226\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22189\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22189","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces
We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth –dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension .