神经小波域扩散三维形状生成,反演和操作

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jingyu Hu, Ka-Hei Hui, Zhengzhe Liu, Ruihui Li, Chi-Wing Fu
{"title":"神经小波域扩散三维形状生成,反演和操作","authors":"Jingyu Hu, Ka-Hei Hui, Zhengzhe Liu, Ruihui Li, Chi-Wing Fu","doi":"10.1145/3635304","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain. Specifically, we propose a <i>compact wavelet representation</i> with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets. Then, we design a pair of neural networks: a diffusion-based <i>generator</i> to produce diverse shapes in the form of the coarse coefficient volumes and a <i>detail predictor</i> to produce compatible detail coefficient volumes for introducing fine structures and details. Further, we may jointly train an <i>encoder network</i> to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations. Both quantitative and qualitative experimental results manifest the compelling shape generation, inversion, and manipulation capabilities of our approach over the state-of-the-art methods.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":" 14","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and Manipulation\",\"authors\":\"Jingyu Hu, Ka-Hei Hui, Zhengzhe Liu, Ruihui Li, Chi-Wing Fu\",\"doi\":\"10.1145/3635304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain. Specifically, we propose a <i>compact wavelet representation</i> with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets. Then, we design a pair of neural networks: a diffusion-based <i>generator</i> to produce diverse shapes in the form of the coarse coefficient volumes and a <i>detail predictor</i> to produce compatible detail coefficient volumes for introducing fine structures and details. Further, we may jointly train an <i>encoder network</i> to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations. Both quantitative and qualitative experimental results manifest the compelling shape generation, inversion, and manipulation capabilities of our approach over the state-of-the-art methods.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3635304\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3635304","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于小波域连续隐式表示的直接生成建模方法,用于三维形状的生成、反演和处理。具体来说,我们提出了一种紧凑的小波表示,其中包含一对粗糙和细节系数体积,通过截断符号距离函数和多尺度双正交小波隐式地表示三维形状。然后,我们设计了一对神经网络:一个基于扩散的生成器以粗系数体积的形式产生各种形状,一个细节预测器以产生兼容的细节系数体积来引入精细结构和细节。此外,我们可以联合训练编码器网络来学习反转形状的潜在空间,使我们能够实现丰富多样的整体形状和区域感知形状操作。定量和定性实验结果都表明,我们的方法比最先进的方法具有令人信服的形状生成、反演和操作能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and Manipulation

This paper presents a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain. Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets. Then, we design a pair of neural networks: a diffusion-based generator to produce diverse shapes in the form of the coarse coefficient volumes and a detail predictor to produce compatible detail coefficient volumes for introducing fine structures and details. Further, we may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations. Both quantitative and qualitative experimental results manifest the compelling shape generation, inversion, and manipulation capabilities of our approach over the state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信