在某些线束上具有正全纯截面曲率的完备Kähler度量(与丘猜想上的同质性一点有关)

IF 1.2 4区 数学 Q1 MATHEMATICS
Xiaoman Duan, Zhuangdan Guan
{"title":"在某些线束上具有正全纯截面曲率的完备Kähler度量(与丘猜想上的同质性一点有关)","authors":"Xiaoman Duan,&nbsp;Zhuangdan Guan","doi":"10.1007/s10473-024-0103-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study Kähler metrics on a certain line bundle over some compact Kähler manifolds to find complete Kähler metrics with positive holomorphic sectional (or bisectional) curvatures. Thus, we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"78 - 102"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Complete Kähler metrics with positive holomorphic sectional curvatures on certain line bundles (related to a cohomogeneity one point of view on a Yau conjecture)\",\"authors\":\"Xiaoman Duan,&nbsp;Zhuangdan Guan\",\"doi\":\"10.1007/s10473-024-0103-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study Kähler metrics on a certain line bundle over some compact Kähler manifolds to find complete Kähler metrics with positive holomorphic sectional (or bisectional) curvatures. Thus, we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"44 1\",\"pages\":\"78 - 102\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0103-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0103-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们研究了紧致Kähler流形上某线束上的Kähler度量,以寻找具有正全纯截面(或对分)曲率的完全Kähler度量。因此,我们将一种策略应用于一个著名的具有共齐性一几何的丘猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Kähler metrics with positive holomorphic sectional curvatures on certain line bundles (related to a cohomogeneity one point of view on a Yau conjecture)

In this article, we study Kähler metrics on a certain line bundle over some compact Kähler manifolds to find complete Kähler metrics with positive holomorphic sectional (or bisectional) curvatures. Thus, we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信