罗杰斯-拉马努金型的几个新恒等式

IF 1.2 4区 数学 Q1 MATHEMATICS
Jing Gu, Zhizheng Zhang
{"title":"罗杰斯-拉马努金型的几个新恒等式","authors":"Jing Gu,&nbsp;Zhizheng Zhang","doi":"10.1007/s10473-024-0106-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz’s inversions formulas and Jackson’s transformation formula. In terms of application, by specializing certain parameters in the two transformations, four Rogers-Ramanujan type identities associated with moduli 20 are obtained.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new identities of Rogers-Ramanujan type\",\"authors\":\"Jing Gu,&nbsp;Zhizheng Zhang\",\"doi\":\"10.1007/s10473-024-0106-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz’s inversions formulas and Jackson’s transformation formula. In terms of application, by specializing certain parameters in the two transformations, four Rogers-Ramanujan type identities associated with moduli 20 are obtained.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0106-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0106-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Carlitz的反演公式和Jackson的变换公式,建立了两个非定值的基本超几何级数的变换公式。在应用方面,通过对这两个变换中的某些参数进行专门化,得到了与模20相关的四个Rogers-Ramanujan型恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some new identities of Rogers-Ramanujan type

In this paper, we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz’s inversions formulas and Jackson’s transformation formula. In terms of application, by specializing certain parameters in the two transformations, four Rogers-Ramanujan type identities associated with moduli 20 are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信