Samuel B. Strohm, Giuseppe D. Saldi, Vasileios Mavromatis, Wolfgang W. Schmahl, Guntram Jordan
{"title":"磷存在下钛矿生长的研究","authors":"Samuel B. Strohm, Giuseppe D. Saldi, Vasileios Mavromatis, Wolfgang W. Schmahl, Guntram Jordan","doi":"10.1007/s10498-023-09418-z","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphate is a common component in natural growth solutions of ikaite. Although phosphate often occurs as a minor constituent, its presence may promote the formation of ikaite as it significantly inhibits the precipitation of calcite. The interactions of phosphate with ikaite and the role of a potential uptake of phosphate by ikaite, however, are poorly understood. In this study, the influence of phosphate on ikaite growth at 1 °C was investigated. Ikaite- and calcite-seeded growth experiments were conducted in cryo-mixed-flow reactors at saturation ratios 1.5 ≤ <i>Ω</i><sub>ikaite</sub> ≤ 2.9 (<i>Ω</i> = ionic activity product/solubility product). From these growth experiments, the rate constant <i>k</i> = 0.10 ± 0.03 µmol/m<sup>2</sup>/s and the reaction order <i>n</i> = 0.8 ± 0.3 were derived for ikaite. The reaction order implies a transport- or adsorption-controlled growth mechanism which supports a low energy pathway of ikaite growth via an attachment of hydrous CaCO<sub>3</sub><sup>0</sup> complexes without any extensive dehydration of aqueous species as, for instance, required for calcite growth. A potential depletion of aqueous phosphate due to an uptake by ikaite growth was not detectable. Furthermore, growth retardation by phosphate, as known for calcite growth, was not evident. Thus, a significant incorporation of phosphate into growing ikaite could be precluded for the conditions applied in this study. The observed lack of incorporation of phosphate agrees with the previously suggested growth mechanism via the attachment of hydrous CaCO<sub>3</sub><sup>0</sup> complexes which likely does not facilitate substantial substitution of carbonate by phosphate ions.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"29 4","pages":"219 - 233"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-023-09418-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A Study on Ikaite Growth in the Presence of Phosphate\",\"authors\":\"Samuel B. Strohm, Giuseppe D. Saldi, Vasileios Mavromatis, Wolfgang W. Schmahl, Guntram Jordan\",\"doi\":\"10.1007/s10498-023-09418-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphate is a common component in natural growth solutions of ikaite. Although phosphate often occurs as a minor constituent, its presence may promote the formation of ikaite as it significantly inhibits the precipitation of calcite. The interactions of phosphate with ikaite and the role of a potential uptake of phosphate by ikaite, however, are poorly understood. In this study, the influence of phosphate on ikaite growth at 1 °C was investigated. Ikaite- and calcite-seeded growth experiments were conducted in cryo-mixed-flow reactors at saturation ratios 1.5 ≤ <i>Ω</i><sub>ikaite</sub> ≤ 2.9 (<i>Ω</i> = ionic activity product/solubility product). From these growth experiments, the rate constant <i>k</i> = 0.10 ± 0.03 µmol/m<sup>2</sup>/s and the reaction order <i>n</i> = 0.8 ± 0.3 were derived for ikaite. The reaction order implies a transport- or adsorption-controlled growth mechanism which supports a low energy pathway of ikaite growth via an attachment of hydrous CaCO<sub>3</sub><sup>0</sup> complexes without any extensive dehydration of aqueous species as, for instance, required for calcite growth. A potential depletion of aqueous phosphate due to an uptake by ikaite growth was not detectable. Furthermore, growth retardation by phosphate, as known for calcite growth, was not evident. Thus, a significant incorporation of phosphate into growing ikaite could be precluded for the conditions applied in this study. The observed lack of incorporation of phosphate agrees with the previously suggested growth mechanism via the attachment of hydrous CaCO<sub>3</sub><sup>0</sup> complexes which likely does not facilitate substantial substitution of carbonate by phosphate ions.</p></div>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"29 4\",\"pages\":\"219 - 233\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10498-023-09418-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-023-09418-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-023-09418-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Study on Ikaite Growth in the Presence of Phosphate
Phosphate is a common component in natural growth solutions of ikaite. Although phosphate often occurs as a minor constituent, its presence may promote the formation of ikaite as it significantly inhibits the precipitation of calcite. The interactions of phosphate with ikaite and the role of a potential uptake of phosphate by ikaite, however, are poorly understood. In this study, the influence of phosphate on ikaite growth at 1 °C was investigated. Ikaite- and calcite-seeded growth experiments were conducted in cryo-mixed-flow reactors at saturation ratios 1.5 ≤ Ωikaite ≤ 2.9 (Ω = ionic activity product/solubility product). From these growth experiments, the rate constant k = 0.10 ± 0.03 µmol/m2/s and the reaction order n = 0.8 ± 0.3 were derived for ikaite. The reaction order implies a transport- or adsorption-controlled growth mechanism which supports a low energy pathway of ikaite growth via an attachment of hydrous CaCO30 complexes without any extensive dehydration of aqueous species as, for instance, required for calcite growth. A potential depletion of aqueous phosphate due to an uptake by ikaite growth was not detectable. Furthermore, growth retardation by phosphate, as known for calcite growth, was not evident. Thus, a significant incorporation of phosphate into growing ikaite could be precluded for the conditions applied in this study. The observed lack of incorporation of phosphate agrees with the previously suggested growth mechanism via the attachment of hydrous CaCO30 complexes which likely does not facilitate substantial substitution of carbonate by phosphate ions.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.