论破产情形下De Finetti的最优脉冲股利控制问题

IF 1.2 4区 数学 Q1 MATHEMATICS
Wenyuan Wang, Ruixing Ming, Yijun Hu
{"title":"论破产情形下De Finetti的最优脉冲股利控制问题","authors":"Wenyuan Wang,&nbsp;Ruixing Ming,&nbsp;Yijun Hu","doi":"10.1007/s10473-024-0112-4","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S. bankruptcy code, in this paper we follow [44] to revisit the De Finetti dividend control problem under the reorganization process and the regulator’s intervention documented in U.S. Chapter 11 bankruptcy. We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments. Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem, and hence computations and proofs that are distinct from [44] are needed. To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy, the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching. Some explicit expressions of the expected net present values under a double barrier dividend strategy, new to the literature, are established in terms of scale functions. With the help of these expressions, we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies. When the tail of the Lévy measure is log-convex, this optimal double barrier dividend strategy is then verified as the optimal dividend strategy, solving our optimal impulse control problem.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On De Finetti’s optimal impulse dividend control problem under Chapter 11 bankruptcy\",\"authors\":\"Wenyuan Wang,&nbsp;Ruixing Ming,&nbsp;Yijun Hu\",\"doi\":\"10.1007/s10473-024-0112-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S. bankruptcy code, in this paper we follow [44] to revisit the De Finetti dividend control problem under the reorganization process and the regulator’s intervention documented in U.S. Chapter 11 bankruptcy. We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments. Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem, and hence computations and proofs that are distinct from [44] are needed. To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy, the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching. Some explicit expressions of the expected net present values under a double barrier dividend strategy, new to the literature, are established in terms of scale functions. With the help of these expressions, we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies. When the tail of the Lévy measure is log-convex, this optimal double barrier dividend strategy is then verified as the optimal dividend strategy, solving our optimal impulse control problem.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0112-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0112-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受美国破产法中股利控制和风险管理问题研究最新进展的影响,本文将遵循[44]的思路,重新审视美国破产法第11章中记载的重组过程和监管机构干预下的De Finetti股利控制问题。我们通过进一步调整股息的固定交易成本来模仿现实世界的股息支付过程来做到这一点。纳入固定交易费用将目标最优股利问题转化为脉冲控制问题,而不是奇异控制问题,因此需要与[44]不同的计算和证明。为了解释由于第11章破产的更微妙的概念而产生的财务压力,股息后的盈余过程是由一个具有内生制度转换的分段频谱负的lsamvy过程驱动的。本文从规模函数的角度建立了双屏障股利策略下的预期净现值的一些显式表达式,这是文献中的新内容。利用这些表达式,我们可以刻画出可容许的双障碍股利策略集合中的最优策略。当lsamvy测度的尾部为对数凸时,验证了该最优双屏障分红策略为最优分红策略,解决了最优脉冲控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On De Finetti’s optimal impulse dividend control problem under Chapter 11 bankruptcy

Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S. bankruptcy code, in this paper we follow [44] to revisit the De Finetti dividend control problem under the reorganization process and the regulator’s intervention documented in U.S. Chapter 11 bankruptcy. We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments. Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem, and hence computations and proofs that are distinct from [44] are needed. To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy, the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching. Some explicit expressions of the expected net present values under a double barrier dividend strategy, new to the literature, are established in terms of scale functions. With the help of these expressions, we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies. When the tail of the Lévy measure is log-convex, this optimal double barrier dividend strategy is then verified as the optimal dividend strategy, solving our optimal impulse control problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信