Xiangying Guo, Yunan Zhu, Zhong Luo, Dongxing Cao, Jihou Yang
{"title":"用于悬臂镗杆振动控制的变刚度调谐粒子阻尼器","authors":"Xiangying Guo, Yunan Zhu, Zhong Luo, Dongxing Cao, Jihou Yang","doi":"10.1007/s10483-023-3055-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research proposes a novel type of variable stiffness tuned particle damper (TPD) for reducing vibrations in boring bars. The TPD integrates the developments of particle damping and dynamical vibration absorber, whose frequency tuning principle is established through an equivalent theoretical model. Based on the multiphase flow theory of gas-solid, it is effective to obtain the equivalent damping and stiffness of the particle damping. The dynamic equations of the coupled system, consisting of a boring bar with the TPD, are built by Hamilton’s principle. The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm. Moreover, an improvement is proposed to the existing gas-solid flow theory, and a comparative analysis of introducing the stiffness term on the damping effect is presented. The parameters of the TPD are optimized by the genetic algorithm, and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 12","pages":"2163 - 2186"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable stiffness tuned particle dampers for vibration control of cantilever boring bars\",\"authors\":\"Xiangying Guo, Yunan Zhu, Zhong Luo, Dongxing Cao, Jihou Yang\",\"doi\":\"10.1007/s10483-023-3055-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research proposes a novel type of variable stiffness tuned particle damper (TPD) for reducing vibrations in boring bars. The TPD integrates the developments of particle damping and dynamical vibration absorber, whose frequency tuning principle is established through an equivalent theoretical model. Based on the multiphase flow theory of gas-solid, it is effective to obtain the equivalent damping and stiffness of the particle damping. The dynamic equations of the coupled system, consisting of a boring bar with the TPD, are built by Hamilton’s principle. The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm. Moreover, an improvement is proposed to the existing gas-solid flow theory, and a comparative analysis of introducing the stiffness term on the damping effect is presented. The parameters of the TPD are optimized by the genetic algorithm, and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 12\",\"pages\":\"2163 - 2186\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3055-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3055-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Variable stiffness tuned particle dampers for vibration control of cantilever boring bars
This research proposes a novel type of variable stiffness tuned particle damper (TPD) for reducing vibrations in boring bars. The TPD integrates the developments of particle damping and dynamical vibration absorber, whose frequency tuning principle is established through an equivalent theoretical model. Based on the multiphase flow theory of gas-solid, it is effective to obtain the equivalent damping and stiffness of the particle damping. The dynamic equations of the coupled system, consisting of a boring bar with the TPD, are built by Hamilton’s principle. The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm. Moreover, an improvement is proposed to the existing gas-solid flow theory, and a comparative analysis of introducing the stiffness term on the damping effect is presented. The parameters of the TPD are optimized by the genetic algorithm, and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.