一类微分算子下调和映射的Bloch常数估计

IF 1.2 4区 数学 Q1 MATHEMATICS
Jieling Chen, Mingsheng Liu
{"title":"一类微分算子下调和映射的Bloch常数估计","authors":"Jieling Chen,&nbsp;Mingsheng Liu","doi":"10.1007/s10473-024-0116-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the form <span>\\(L(f) = z{f_z} - \\bar z{f_{\\bar z}}\\)</span>, where <i>f</i> represents normalized harmonic mappings with bounded dilation. Then, using these results, we present better estimations for the Bloch constants of certain harmonic mappings <i>L</i>(<i>f</i>), where <i>f</i> is a <i>K</i>-quasiregular harmonic or open harmonic. Finally, we establish three versions of Bloch-Landau type theorem for biharmonic mappings of the form <i>L</i>(<i>f</i>). These results are sharp in some given cases and improve the related results of earlier authors.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"295 - 310"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimate on the Bloch constant for certain harmonic mappings under a differential operator\",\"authors\":\"Jieling Chen,&nbsp;Mingsheng Liu\",\"doi\":\"10.1007/s10473-024-0116-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the form <span>\\\\(L(f) = z{f_z} - \\\\bar z{f_{\\\\bar z}}\\\\)</span>, where <i>f</i> represents normalized harmonic mappings with bounded dilation. Then, using these results, we present better estimations for the Bloch constants of certain harmonic mappings <i>L</i>(<i>f</i>), where <i>f</i> is a <i>K</i>-quasiregular harmonic or open harmonic. Finally, we establish three versions of Bloch-Landau type theorem for biharmonic mappings of the form <i>L</i>(<i>f</i>). These results are sharp in some given cases and improve the related results of earlier authors.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"44 1\",\"pages\":\"295 - 310\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0116-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0116-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先得到了形式为\(L(f) = z{f_z} - \bar z{f_{\bar z}}\)的调和映射的一元半径和Bloch常数的精确值,其中f表示有界膨胀的归一化调和映射。然后,利用这些结果,我们给出了某些调和映射L(f)的Bloch常数的更好估计,其中f是k -准正则调和或开调和。最后,我们建立了三种形式为L(f)的双调和映射的Bloch-Landau型定理。这些结果在某些特定情况下是尖锐的,并且改进了早期作者的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimate on the Bloch constant for certain harmonic mappings under a differential operator

In this paper, we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the form \(L(f) = z{f_z} - \bar z{f_{\bar z}}\), where f represents normalized harmonic mappings with bounded dilation. Then, using these results, we present better estimations for the Bloch constants of certain harmonic mappings L(f), where f is a K-quasiregular harmonic or open harmonic. Finally, we establish three versions of Bloch-Landau type theorem for biharmonic mappings of the form L(f). These results are sharp in some given cases and improve the related results of earlier authors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信