{"title":"时空各向异性高斯场的多重交点","authors":"Zhenlong Chen, Weijie Yuan","doi":"10.1007/s10473-024-0115-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> = {<i>X</i>(<i>t</i>) ∈ ℝ<sup><i>d</i></sup>, <i>t</i> ∈ℝ<sup><i>N</i></sup>} be a centered space-time anisotropic Gaussian field with indices <i>H</i> = (<i>H</i><sub>1</sub>, ⋯, H<sub><i>N</i></sub>) ∈ (0, 1)<sup><i>N</i></sup>, where the components <i>X</i><sub><i>i</i></sub> (<i>i</i> = 1, ⋯, <i>d</i>) of <i>X</i> are independent, and the canonical metric <span>\\(\\sqrt {{{\\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \\,(i = 1, \\cdots ,d)\\)</span> is commensurate with <span>\\({\\gamma ^{{\\alpha _i}}}(\\sum\\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \\)</span> for <i>s</i> = (<i>s</i><sub>1</sub>, ⋯, <i>s</i><sub><i>N</i></sub>), <i>t</i> = (<i>t</i><sub>1</sub>, ⋯, <i>t</i><sub><i>N</i></sub>) ∈ ℝ<sup><i>N</i></sup>, <i>α</i><sub><i>i</i></sub> ∈ (0, 1], and with the continuous function <i>γ</i>(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of <i>X</i> can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple intersections of space-time anisotropic Gaussian fields\",\"authors\":\"Zhenlong Chen, Weijie Yuan\",\"doi\":\"10.1007/s10473-024-0115-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> = {<i>X</i>(<i>t</i>) ∈ ℝ<sup><i>d</i></sup>, <i>t</i> ∈ℝ<sup><i>N</i></sup>} be a centered space-time anisotropic Gaussian field with indices <i>H</i> = (<i>H</i><sub>1</sub>, ⋯, H<sub><i>N</i></sub>) ∈ (0, 1)<sup><i>N</i></sup>, where the components <i>X</i><sub><i>i</i></sub> (<i>i</i> = 1, ⋯, <i>d</i>) of <i>X</i> are independent, and the canonical metric <span>\\\\(\\\\sqrt {{{\\\\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \\\\,(i = 1, \\\\cdots ,d)\\\\)</span> is commensurate with <span>\\\\({\\\\gamma ^{{\\\\alpha _i}}}(\\\\sum\\\\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \\\\)</span> for <i>s</i> = (<i>s</i><sub>1</sub>, ⋯, <i>s</i><sub><i>N</i></sub>), <i>t</i> = (<i>t</i><sub>1</sub>, ⋯, <i>t</i><sub><i>N</i></sub>) ∈ ℝ<sup><i>N</i></sup>, <i>α</i><sub><i>i</i></sub> ∈ (0, 1], and with the continuous function <i>γ</i>(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of <i>X</i> can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0115-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0115-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiple intersections of space-time anisotropic Gaussian fields
Let X = {X(t) ∈ ℝd, t ∈ℝN} be a centered space-time anisotropic Gaussian field with indices H = (H1, ⋯, HN) ∈ (0, 1)N, where the components Xi (i = 1, ⋯, d) of X are independent, and the canonical metric \(\sqrt {{{\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \,(i = 1, \cdots ,d)\) is commensurate with \({\gamma ^{{\alpha _i}}}(\sum\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \) for s = (s1, ⋯, sN), t = (t1, ⋯, tN) ∈ ℝN, αi ∈ (0, 1], and with the continuous function γ(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.