时空各向异性高斯场的多重交点

IF 1.2 4区 数学 Q1 MATHEMATICS
Zhenlong Chen, Weijie Yuan
{"title":"时空各向异性高斯场的多重交点","authors":"Zhenlong Chen,&nbsp;Weijie Yuan","doi":"10.1007/s10473-024-0115-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> = {<i>X</i>(<i>t</i>) ∈ ℝ<sup><i>d</i></sup>, <i>t</i> ∈ℝ<sup><i>N</i></sup>} be a centered space-time anisotropic Gaussian field with indices <i>H</i> = (<i>H</i><sub>1</sub>, ⋯, H<sub><i>N</i></sub>) ∈ (0, 1)<sup><i>N</i></sup>, where the components <i>X</i><sub><i>i</i></sub> (<i>i</i> = 1, ⋯, <i>d</i>) of <i>X</i> are independent, and the canonical metric <span>\\(\\sqrt {{{\\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \\,(i = 1, \\cdots ,d)\\)</span> is commensurate with <span>\\({\\gamma ^{{\\alpha _i}}}(\\sum\\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \\)</span> for <i>s</i> = (<i>s</i><sub>1</sub>, ⋯, <i>s</i><sub><i>N</i></sub>), <i>t</i> = (<i>t</i><sub>1</sub>, ⋯, <i>t</i><sub><i>N</i></sub>) ∈ ℝ<sup><i>N</i></sup>, <i>α</i><sub><i>i</i></sub> ∈ (0, 1], and with the continuous function <i>γ</i>(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of <i>X</i> can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple intersections of space-time anisotropic Gaussian fields\",\"authors\":\"Zhenlong Chen,&nbsp;Weijie Yuan\",\"doi\":\"10.1007/s10473-024-0115-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> = {<i>X</i>(<i>t</i>) ∈ ℝ<sup><i>d</i></sup>, <i>t</i> ∈ℝ<sup><i>N</i></sup>} be a centered space-time anisotropic Gaussian field with indices <i>H</i> = (<i>H</i><sub>1</sub>, ⋯, H<sub><i>N</i></sub>) ∈ (0, 1)<sup><i>N</i></sup>, where the components <i>X</i><sub><i>i</i></sub> (<i>i</i> = 1, ⋯, <i>d</i>) of <i>X</i> are independent, and the canonical metric <span>\\\\(\\\\sqrt {{{\\\\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \\\\,(i = 1, \\\\cdots ,d)\\\\)</span> is commensurate with <span>\\\\({\\\\gamma ^{{\\\\alpha _i}}}(\\\\sum\\\\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \\\\)</span> for <i>s</i> = (<i>s</i><sub>1</sub>, ⋯, <i>s</i><sub><i>N</i></sub>), <i>t</i> = (<i>t</i><sub>1</sub>, ⋯, <i>t</i><sub><i>N</i></sub>) ∈ ℝ<sup><i>N</i></sup>, <i>α</i><sub><i>i</i></sub> ∈ (0, 1], and with the continuous function <i>γ</i>(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of <i>X</i> can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0115-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0115-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

令X = {X(t)∈∂d, t∈∂N} \(\sqrt {{{\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \,(i = 1, \cdots ,d)\) 与…相称 \({\gamma ^{{\alpha _i}}}(\sum\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \) 对于s = (s1,⋯,sN), t = (t1,⋯,tN)∈,αi∈(0,1],且连续函数γ(·)满足一定条件。首先,X命中概率的上界和下界可以由相应的广义Hausdorff测度和容量导出,它们基于显式依赖于γ(·)的核函数。此外,还考虑了两个独立的具有不同分布的空时各向异性高斯场的采样路径的多重相交。我们的结果将各向异性高斯场的相应结果推广到一类大的时空各向异性高斯场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple intersections of space-time anisotropic Gaussian fields

Let X = {X(t) ∈ ℝd, t ∈ℝN} be a centered space-time anisotropic Gaussian field with indices H = (H1, ⋯, HN) ∈ (0, 1)N, where the components Xi (i = 1, ⋯, d) of X are independent, and the canonical metric \(\sqrt {{{\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \,(i = 1, \cdots ,d)\) is commensurate with \({\gamma ^{{\alpha _i}}}(\sum\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \) for s = (s1, ⋯, sN), t = (t1, ⋯, tN) ∈ ℝN, αi ∈ (0, 1], and with the continuous function γ(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信