一类非线性微分方程的精确亚纯解

IF 1.2 4区 数学 Q1 MATHEMATICS
Huifang Liu, Zhiqiang Mao
{"title":"一类非线性微分方程的精确亚纯解","authors":"Huifang Liu,&nbsp;Zhiqiang Mao","doi":"10.1007/s10473-024-0104-4","DOIUrl":null,"url":null,"abstract":"<div><p>We find the exact forms of meromorphic solutions of the nonlinear differential equations </p><div><div><span>$${f^n} + q(z){{\\rm{e}}^{Q(z)}}{f^{(k)}} = {p_1}{{\\rm{e}}^{{\\alpha _1}z}} + {p_2}{{\\rm{e}}^{{\\alpha _2}z}},\\,\\,\\,\\,n \\ge 3,\\,\\,\\,k \\ge 1,$$</span></div></div><p> where <i>q, Q</i> are nonzero polynomials, <i>Q ≡ Const.</i>, and <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>α</i><sub>1</sub>, <i>α</i><sub>2</sub> are nonzero constants with <i>α</i><sub>1</sub> ≠ <i>α</i><sub>2</sub>. Compared with previous results on the equation <i>p</i>(<i>z</i>)<i>f</i><sup>3</sup> + <i>q</i>(<i>z</i>)<i>f″</i> = − sin <i>α</i>(<i>z</i>) with polynomial coefficients, our results show that the coefficient of the term <i>f</i><sup>(<i>k</i>)</sup> perturbed by multiplying an exponential function will affect the structure of its solutions.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exact meromorphic solutions of some nonlinear differential equations\",\"authors\":\"Huifang Liu,&nbsp;Zhiqiang Mao\",\"doi\":\"10.1007/s10473-024-0104-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We find the exact forms of meromorphic solutions of the nonlinear differential equations </p><div><div><span>$${f^n} + q(z){{\\\\rm{e}}^{Q(z)}}{f^{(k)}} = {p_1}{{\\\\rm{e}}^{{\\\\alpha _1}z}} + {p_2}{{\\\\rm{e}}^{{\\\\alpha _2}z}},\\\\,\\\\,\\\\,\\\\,n \\\\ge 3,\\\\,\\\\,\\\\,k \\\\ge 1,$$</span></div></div><p> where <i>q, Q</i> are nonzero polynomials, <i>Q ≡ Const.</i>, and <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>α</i><sub>1</sub>, <i>α</i><sub>2</sub> are nonzero constants with <i>α</i><sub>1</sub> ≠ <i>α</i><sub>2</sub>. Compared with previous results on the equation <i>p</i>(<i>z</i>)<i>f</i><sup>3</sup> + <i>q</i>(<i>z</i>)<i>f″</i> = − sin <i>α</i>(<i>z</i>) with polynomial coefficients, our results show that the coefficient of the term <i>f</i><sup>(<i>k</i>)</sup> perturbed by multiplying an exponential function will affect the structure of its solutions.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-024-0104-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0104-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们找到非线性微分方程$${f^n} + q(z){{\rm{e}}^{Q(z)}}{f^{(k)}} = {p_1}{{\rm{e}}^{{\alpha _1}z}} + {p_2}{{\rm{e}}^{{\alpha _2}z}},\,\,\,\,n \ge 3,\,\,\,k \ge 1,$$的亚纯解的精确形式,其中q, q是非零多项式,q≡Const。, p1, p2, α1, α2是α1≠α2的非零常数。与先前的多项式系数方程p(z)f3 + q(z)f″=−sin α(z)的结果相比,我们的结果表明,系数f(k)被乘以指数函数扰动将影响其解的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The exact meromorphic solutions of some nonlinear differential equations

We find the exact forms of meromorphic solutions of the nonlinear differential equations

$${f^n} + q(z){{\rm{e}}^{Q(z)}}{f^{(k)}} = {p_1}{{\rm{e}}^{{\alpha _1}z}} + {p_2}{{\rm{e}}^{{\alpha _2}z}},\,\,\,\,n \ge 3,\,\,\,k \ge 1,$$

where q, Q are nonzero polynomials, Q ≡ Const., and p1, p2, α1, α2 are nonzero constants with α1α2. Compared with previous results on the equation p(z)f3 + q(z)f″ = − sin α(z) with polynomial coefficients, our results show that the coefficient of the term f(k) perturbed by multiplying an exponential function will affect the structure of its solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信