{"title":"从复杂性理论中选择正确的算法","authors":"Shouda Wang , Weijie Zheng , Benjamin Doerr","doi":"10.1016/j.ic.2023.105125","DOIUrl":null,"url":null,"abstract":"<div><p>Choosing a suitable algorithm from the myriads of different search heuristics is difficult when faced with a novel optimization problem. In this work, we argue that the purely academic question of what could be the best possible algorithm in a certain broad class of black-box optimizers can give fruitful indications in which direction to search for good established heuristics. We demonstrate this approach on the recently proposed DLB benchmark. Our finding that the unary unbiased black-box complexity is only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> suggests the Metropolis algorithm as an interesting candidate and we prove that it solves the DLB problem in quadratic time. We also prove that better runtimes cannot be obtained in the class of unary unbiased algorithms. We therefore shift our attention to algorithms that use the information of more parents to generate new solutions and find that the significance-based compact genetic algorithm can solve the DLB problem in time <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"296 ","pages":"Article 105125"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540123001281/pdfft?md5=8b4268eeef641099a096e9ad52fb7722&pid=1-s2.0-S0890540123001281-main.pdf","citationCount":"15","resultStr":"{\"title\":\"Choosing the right algorithm with hints from complexity theory\",\"authors\":\"Shouda Wang , Weijie Zheng , Benjamin Doerr\",\"doi\":\"10.1016/j.ic.2023.105125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Choosing a suitable algorithm from the myriads of different search heuristics is difficult when faced with a novel optimization problem. In this work, we argue that the purely academic question of what could be the best possible algorithm in a certain broad class of black-box optimizers can give fruitful indications in which direction to search for good established heuristics. We demonstrate this approach on the recently proposed DLB benchmark. Our finding that the unary unbiased black-box complexity is only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> suggests the Metropolis algorithm as an interesting candidate and we prove that it solves the DLB problem in quadratic time. We also prove that better runtimes cannot be obtained in the class of unary unbiased algorithms. We therefore shift our attention to algorithms that use the information of more parents to generate new solutions and find that the significance-based compact genetic algorithm can solve the DLB problem in time <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"296 \",\"pages\":\"Article 105125\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890540123001281/pdfft?md5=8b4268eeef641099a096e9ad52fb7722&pid=1-s2.0-S0890540123001281-main.pdf\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540123001281\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123001281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Choosing the right algorithm with hints from complexity theory
Choosing a suitable algorithm from the myriads of different search heuristics is difficult when faced with a novel optimization problem. In this work, we argue that the purely academic question of what could be the best possible algorithm in a certain broad class of black-box optimizers can give fruitful indications in which direction to search for good established heuristics. We demonstrate this approach on the recently proposed DLB benchmark. Our finding that the unary unbiased black-box complexity is only suggests the Metropolis algorithm as an interesting candidate and we prove that it solves the DLB problem in quadratic time. We also prove that better runtimes cannot be obtained in the class of unary unbiased algorithms. We therefore shift our attention to algorithms that use the information of more parents to generate new solutions and find that the significance-based compact genetic algorithm can solve the DLB problem in time .
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking