病理学中机器学习性能评估的建议:来自美国病理学家学院的概念论文。

Matthew G Hanna, Niels H Olson, Mark Zarella, Rajesh C Dash, Markus D Herrmann, Larissa V Furtado, Michelle N Stram, Patricia M Raciti, Lewis Hassell, Alex Mays, Liron Pantanowitz, Joseph S Sirintrapun, Savitri Krishnamurthy, Anil Parwani, Giovanni Lujan, Andrew Evans, Eric F Glassy, Marilyn M Bui, Rajendra Singh, Rhona J Souers, Monica E de Baca, Jansen N Seheult
{"title":"病理学中机器学习性能评估的建议:来自美国病理学家学院的概念论文。","authors":"Matthew G Hanna, Niels H Olson, Mark Zarella, Rajesh C Dash, Markus D Herrmann, Larissa V Furtado, Michelle N Stram, Patricia M Raciti, Lewis Hassell, Alex Mays, Liron Pantanowitz, Joseph S Sirintrapun, Savitri Krishnamurthy, Anil Parwani, Giovanni Lujan, Andrew Evans, Eric F Glassy, Marilyn M Bui, Rajendra Singh, Rhona J Souers, Monica E de Baca, Jansen N Seheult","doi":"10.5858/arpa.2023-0042-CP","DOIUrl":null,"url":null,"abstract":"<p><strong>Context.—: </strong>Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.</p><p><strong>Objective.—: </strong>To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.</p><p><strong>Data sources.—: </strong>An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.</p><p><strong>Conclusions.—: </strong>Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.</p>","PeriodicalId":93883,"journal":{"name":"Archives of pathology & laboratory medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendations for Performance Evaluation of Machine Learning in Pathology: A Concept Paper From the College of American Pathologists.\",\"authors\":\"Matthew G Hanna, Niels H Olson, Mark Zarella, Rajesh C Dash, Markus D Herrmann, Larissa V Furtado, Michelle N Stram, Patricia M Raciti, Lewis Hassell, Alex Mays, Liron Pantanowitz, Joseph S Sirintrapun, Savitri Krishnamurthy, Anil Parwani, Giovanni Lujan, Andrew Evans, Eric F Glassy, Marilyn M Bui, Rajendra Singh, Rhona J Souers, Monica E de Baca, Jansen N Seheult\",\"doi\":\"10.5858/arpa.2023-0042-CP\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context.—: </strong>Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.</p><p><strong>Objective.—: </strong>To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.</p><p><strong>Data sources.—: </strong>An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.</p><p><strong>Conclusions.—: </strong>Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.</p>\",\"PeriodicalId\":93883,\"journal\":{\"name\":\"Archives of pathology & laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of pathology & laboratory medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5858/arpa.2023-0042-CP\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of pathology & laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5858/arpa.2023-0042-CP","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上下文。-:机器学习在病理临床领域的应用正在迅速兴起。随着决策支持系统的不断成熟,实验室将越来越需要指导来评估他们在临床实践中的表现。目前还没有正式的指南来帮助病理实验室验证和/或确认这些系统。这些建议是为了在病理临床实践中评估机器学习系统而提出的。-:提出对患者样本进行体外诊断测试的性能评估建议,将机器学习作为实验室工作流程的分析前、分析或分析后阶段的一部分。所描述的主题包括对机器学习模型评估的考虑,包括风险评估、预部署需求、数据来源和管理、验证和确认、变更控制管理、人机交互、从业者培训和能力评估。数据源。-:一个专家小组对文献、临床和实验室标准协会指南、实验室和政府监管框架进行了审查。-:对文献和现有文件的审查使提出建议成为可能。本白皮书涉及用于临床患者测试的机器学习系统的性能评估。鼓励对真实世界的临床数据进行进一步的研究来支持这些建议。机器学习模型的性能评估对于使用机器学习进行临床实践的体外诊断测试的验证和/或验证至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendations for Performance Evaluation of Machine Learning in Pathology: A Concept Paper From the College of American Pathologists.

Context.—: Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.

Objective.—: To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.

Data sources.—: An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.

Conclusions.—: Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信