Matthew G Hanna, Niels H Olson, Mark Zarella, Rajesh C Dash, Markus D Herrmann, Larissa V Furtado, Michelle N Stram, Patricia M Raciti, Lewis Hassell, Alex Mays, Liron Pantanowitz, Joseph S Sirintrapun, Savitri Krishnamurthy, Anil Parwani, Giovanni Lujan, Andrew Evans, Eric F Glassy, Marilyn M Bui, Rajendra Singh, Rhona J Souers, Monica E de Baca, Jansen N Seheult
{"title":"病理学中机器学习性能评估的建议:来自美国病理学家学院的概念论文。","authors":"Matthew G Hanna, Niels H Olson, Mark Zarella, Rajesh C Dash, Markus D Herrmann, Larissa V Furtado, Michelle N Stram, Patricia M Raciti, Lewis Hassell, Alex Mays, Liron Pantanowitz, Joseph S Sirintrapun, Savitri Krishnamurthy, Anil Parwani, Giovanni Lujan, Andrew Evans, Eric F Glassy, Marilyn M Bui, Rajendra Singh, Rhona J Souers, Monica E de Baca, Jansen N Seheult","doi":"10.5858/arpa.2023-0042-CP","DOIUrl":null,"url":null,"abstract":"<p><strong>Context.—: </strong>Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.</p><p><strong>Objective.—: </strong>To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.</p><p><strong>Data sources.—: </strong>An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.</p><p><strong>Conclusions.—: </strong>Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.</p>","PeriodicalId":93883,"journal":{"name":"Archives of pathology & laboratory medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendations for Performance Evaluation of Machine Learning in Pathology: A Concept Paper From the College of American Pathologists.\",\"authors\":\"Matthew G Hanna, Niels H Olson, Mark Zarella, Rajesh C Dash, Markus D Herrmann, Larissa V Furtado, Michelle N Stram, Patricia M Raciti, Lewis Hassell, Alex Mays, Liron Pantanowitz, Joseph S Sirintrapun, Savitri Krishnamurthy, Anil Parwani, Giovanni Lujan, Andrew Evans, Eric F Glassy, Marilyn M Bui, Rajendra Singh, Rhona J Souers, Monica E de Baca, Jansen N Seheult\",\"doi\":\"10.5858/arpa.2023-0042-CP\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context.—: </strong>Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.</p><p><strong>Objective.—: </strong>To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.</p><p><strong>Data sources.—: </strong>An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.</p><p><strong>Conclusions.—: </strong>Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.</p>\",\"PeriodicalId\":93883,\"journal\":{\"name\":\"Archives of pathology & laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of pathology & laboratory medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5858/arpa.2023-0042-CP\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of pathology & laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5858/arpa.2023-0042-CP","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recommendations for Performance Evaluation of Machine Learning in Pathology: A Concept Paper From the College of American Pathologists.
Context.—: Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.
Objective.—: To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.
Data sources.—: An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.
Conclusions.—: Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.