{"title":"为什么动物需要大脑?","authors":"Peter Sterling, Simon Laughlin","doi":"10.1007/s10071-023-01825-7","DOIUrl":null,"url":null,"abstract":"<div><p>In <i>Principles of Neural Design</i> (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, <i>Escherichia coli</i> and <i>Paramecium</i>, and the 302-neuron brain of the nematode <i>Caenorhabditis elegans</i>. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why an animal needs a brain\",\"authors\":\"Peter Sterling, Simon Laughlin\",\"doi\":\"10.1007/s10071-023-01825-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In <i>Principles of Neural Design</i> (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, <i>Escherichia coli</i> and <i>Paramecium</i>, and the 302-neuron brain of the nematode <i>Caenorhabditis elegans</i>. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.</p></div>\",\"PeriodicalId\":7879,\"journal\":{\"name\":\"Animal Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10071-023-01825-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cognition","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-023-01825-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
In Principles of Neural Design (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, Escherichia coli and Paramecium, and the 302-neuron brain of the nematode Caenorhabditis elegans. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.
期刊介绍:
Animal Cognition is an interdisciplinary journal offering current research from many disciplines (ethology, behavioral ecology, animal behavior and learning, cognitive sciences, comparative psychology and evolutionary psychology) on all aspects of animal (and human) cognition in an evolutionary framework.
Animal Cognition publishes original empirical and theoretical work, reviews, methods papers, short communications and correspondence on the mechanisms and evolution of biologically rooted cognitive-intellectual structures.
The journal explores animal time perception and use; causality detection; innate reaction patterns and innate bases of learning; numerical competence and frequency expectancies; symbol use; communication; problem solving, animal thinking and use of tools, and the modularity of the mind.