{"title":"流钻螺杆快速多材料连接:欧拉-拉格朗日耦合法试验与有限元分析","authors":"Minki Kim, Sungho Kim, Namsu Park","doi":"10.1007/s12289-023-01800-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with experiments and finite element (FE) simulations using the coupled Eulerian‒Lagrangian (CEL) method for multi-material joining by the flow drill screw (FDS) process. The FDS joining experiments involved various combinations of aluminum alloys (Al6061-T6 2.0t and Al6063-T6 2.0t), and steel (SPRC45E 1.6t) sheets. During the FDS joining, thermocouples and a thermal imaging camera, FLIR, were used to measure the elevated temperature near the joint. Cross-sections of the multi-material joint specimens were prepared to check the joining quality and the deformed shape of the materials. To consider the complexity of the joining process and convergence issue of numerical simulation, the FE modeling approach for the FDS joining was constructed based on the CEL method using the ABAQUS/Explicit, considering the strain rate and thermal softening dependent strain hardening of each material. From the comparison of experimental and FE simulation results, the reliability of the FE modeling was validated, revealing the predictability of the deformed shape was 90% or more, especially in terms of the bushing length. Furthermore, it was confirmed that the proposed modeling approach can accurately describe the temperature history and peak values during rapid joining.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid multi-material joining via flow drill screw process: experiment and FE analysis using the coupled Eulerian‒Lagrangian method\",\"authors\":\"Minki Kim, Sungho Kim, Namsu Park\",\"doi\":\"10.1007/s12289-023-01800-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with experiments and finite element (FE) simulations using the coupled Eulerian‒Lagrangian (CEL) method for multi-material joining by the flow drill screw (FDS) process. The FDS joining experiments involved various combinations of aluminum alloys (Al6061-T6 2.0t and Al6063-T6 2.0t), and steel (SPRC45E 1.6t) sheets. During the FDS joining, thermocouples and a thermal imaging camera, FLIR, were used to measure the elevated temperature near the joint. Cross-sections of the multi-material joint specimens were prepared to check the joining quality and the deformed shape of the materials. To consider the complexity of the joining process and convergence issue of numerical simulation, the FE modeling approach for the FDS joining was constructed based on the CEL method using the ABAQUS/Explicit, considering the strain rate and thermal softening dependent strain hardening of each material. From the comparison of experimental and FE simulation results, the reliability of the FE modeling was validated, revealing the predictability of the deformed shape was 90% or more, especially in terms of the bushing length. Furthermore, it was confirmed that the proposed modeling approach can accurately describe the temperature history and peak values during rapid joining.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01800-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01800-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Rapid multi-material joining via flow drill screw process: experiment and FE analysis using the coupled Eulerian‒Lagrangian method
This paper is concerned with experiments and finite element (FE) simulations using the coupled Eulerian‒Lagrangian (CEL) method for multi-material joining by the flow drill screw (FDS) process. The FDS joining experiments involved various combinations of aluminum alloys (Al6061-T6 2.0t and Al6063-T6 2.0t), and steel (SPRC45E 1.6t) sheets. During the FDS joining, thermocouples and a thermal imaging camera, FLIR, were used to measure the elevated temperature near the joint. Cross-sections of the multi-material joint specimens were prepared to check the joining quality and the deformed shape of the materials. To consider the complexity of the joining process and convergence issue of numerical simulation, the FE modeling approach for the FDS joining was constructed based on the CEL method using the ABAQUS/Explicit, considering the strain rate and thermal softening dependent strain hardening of each material. From the comparison of experimental and FE simulation results, the reliability of the FE modeling was validated, revealing the predictability of the deformed shape was 90% or more, especially in terms of the bushing length. Furthermore, it was confirmed that the proposed modeling approach can accurately describe the temperature history and peak values during rapid joining.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.