欧拉-科里奥利方程线性衰减率的直接证明

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Siqi Ren
{"title":"欧拉-科里奥利方程线性衰减率的直接证明","authors":"Siqi Ren","doi":"10.1007/s10440-023-00621-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a direct proof of <span>\\(t^{-1}\\)</span> (optimal) linear decay rate for Euler-Coriolis equations in <span>\\(L^{\\infty }\\)</span> space-time. Our proof is based on a proper decomposition of the explicit solution and <span>\\(L^{\\infty }\\)</span> estimate for the kernels, which captures the dispersive mechanism.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Direct Proof of Linear Decay Rate for Euler-Coriolis Equations\",\"authors\":\"Siqi Ren\",\"doi\":\"10.1007/s10440-023-00621-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give a direct proof of <span>\\\\(t^{-1}\\\\)</span> (optimal) linear decay rate for Euler-Coriolis equations in <span>\\\\(L^{\\\\infty }\\\\)</span> space-time. Our proof is based on a proper decomposition of the explicit solution and <span>\\\\(L^{\\\\infty }\\\\)</span> estimate for the kernels, which captures the dispersive mechanism.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00621-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00621-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了\(L^{\infty }\)时空中Euler-Coriolis方程\(t^{-1}\)(最优)线性衰减率的直接证明。我们的证明是基于显式解的适当分解和对核的\(L^{\infty }\)估计,它捕获了色散机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Direct Proof of Linear Decay Rate for Euler-Coriolis Equations

In this paper, we give a direct proof of \(t^{-1}\) (optimal) linear decay rate for Euler-Coriolis equations in \(L^{\infty }\) space-time. Our proof is based on a proper decomposition of the explicit solution and \(L^{\infty }\) estimate for the kernels, which captures the dispersive mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信