应力动态损失模型

IF 1.9 2区 经济学 Q2 ECONOMICS
Emma Kroell, Silvana M. Pesenti, Sebastian Jaimungal
{"title":"应力动态损失模型","authors":"Emma Kroell,&nbsp;Silvana M. Pesenti,&nbsp;Sebastian Jaimungal","doi":"10.1016/j.insmatheco.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Stress testing, and in particular, reverse stress testing, is a prominent exercise in risk management practice. Reverse stress testing, in contrast to (forward) stress testing, aims to find an alternative but plausible model such that under that alternative model, specific adverse stresses (i.e. constraints) are satisfied. Here, we propose a reverse stress testing framework for dynamic models. Specifically, we consider a compound Poisson process<span> over a finite time horizon and stresses composed of expected values of functions applied to the process at the terminal time. We then define the stressed model as the probability measure under which the process satisfies the constraints and which minimizes the Kullback-Leibler divergence to the reference compound Poisson model.</span></p><p>We solve this optimization problem, prove existence and uniqueness of the stressed probability measure, and provide a characterization of the Radon-Nikodym derivative from the reference model to the stressed model. We find that under the stressed measure, the intensity and the severity distribution of the process depend on time and state, and hence the stressed model is not a compound Poisson process. We illustrate the dynamic stress testing by considering stresses on VaR and both VaR and CVaR jointly and provide illustrations of how the stochastic process is altered under these stresses. We generalize the framework to multivariate compound Poisson processes and stresses at times other than the terminal time. We illustrate the applicability of our framework by considering “what if” scenarios, where we answer the question: What is the severity of a stress on a portfolio component at an earlier time such that the aggregate portfolio exceeds a risk threshold at the terminal time? Furthermore, for general constraints, we propose an algorithm to simulate sample paths under the stressed measure, thus allowing to compare the effects of stresses on the dynamics of the process.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stressing dynamic loss models\",\"authors\":\"Emma Kroell,&nbsp;Silvana M. Pesenti,&nbsp;Sebastian Jaimungal\",\"doi\":\"10.1016/j.insmatheco.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stress testing, and in particular, reverse stress testing, is a prominent exercise in risk management practice. Reverse stress testing, in contrast to (forward) stress testing, aims to find an alternative but plausible model such that under that alternative model, specific adverse stresses (i.e. constraints) are satisfied. Here, we propose a reverse stress testing framework for dynamic models. Specifically, we consider a compound Poisson process<span> over a finite time horizon and stresses composed of expected values of functions applied to the process at the terminal time. We then define the stressed model as the probability measure under which the process satisfies the constraints and which minimizes the Kullback-Leibler divergence to the reference compound Poisson model.</span></p><p>We solve this optimization problem, prove existence and uniqueness of the stressed probability measure, and provide a characterization of the Radon-Nikodym derivative from the reference model to the stressed model. We find that under the stressed measure, the intensity and the severity distribution of the process depend on time and state, and hence the stressed model is not a compound Poisson process. We illustrate the dynamic stress testing by considering stresses on VaR and both VaR and CVaR jointly and provide illustrations of how the stochastic process is altered under these stresses. We generalize the framework to multivariate compound Poisson processes and stresses at times other than the terminal time. We illustrate the applicability of our framework by considering “what if” scenarios, where we answer the question: What is the severity of a stress on a portfolio component at an earlier time such that the aggregate portfolio exceeds a risk threshold at the terminal time? Furthermore, for general constraints, we propose an algorithm to simulate sample paths under the stressed measure, thus allowing to compare the effects of stresses on the dynamics of the process.</p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668723000975\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723000975","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

压力测试,特别是反向压力测试,是风险管理实践中的重要实践。反向压力测试,与(正向)压力测试相反,旨在找到一个可替代的但似是而非的模型,以便在该可替代模型下,满足特定的不利压力(即约束)。在这里,我们提出了一个动态模型的反向压力测试框架。具体地说,我们考虑一个有限时间范围内的复合泊松过程和由应用于该过程的函数的期望值组成的应力在终端时间。然后,我们将应力模型定义为过程满足约束条件并使参考复合泊松模型的Kullback-Leibler散度最小的概率度量。我们解决了这一优化问题,证明了应力概率测度的存在唯一性,并给出了参考模型到应力模型的Radon-Nikodym导数的表征。我们发现在应力测量下,过程的强度和严重程度分布依赖于时间和状态,因此应力模型不是一个复合泊松过程。我们通过考虑VaR上的应力以及VaR和CVaR共同的应力来说明动态应力测试,并提供了在这些应力下随机过程如何改变的插图。我们将框架推广到多元复合泊松过程和除终端时间以外的其他时间的应力。我们通过考虑“如果”场景来说明我们框架的适用性,在这个场景中,我们回答了这样一个问题:在较早的时间,对投资组合组件的压力的严重程度是什么,以至于总投资组合在结束时超过了风险阈值?此外,对于一般约束,我们提出了一种算法来模拟应力测量下的样本路径,从而允许比较应力对过程动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stressing dynamic loss models

Stress testing, and in particular, reverse stress testing, is a prominent exercise in risk management practice. Reverse stress testing, in contrast to (forward) stress testing, aims to find an alternative but plausible model such that under that alternative model, specific adverse stresses (i.e. constraints) are satisfied. Here, we propose a reverse stress testing framework for dynamic models. Specifically, we consider a compound Poisson process over a finite time horizon and stresses composed of expected values of functions applied to the process at the terminal time. We then define the stressed model as the probability measure under which the process satisfies the constraints and which minimizes the Kullback-Leibler divergence to the reference compound Poisson model.

We solve this optimization problem, prove existence and uniqueness of the stressed probability measure, and provide a characterization of the Radon-Nikodym derivative from the reference model to the stressed model. We find that under the stressed measure, the intensity and the severity distribution of the process depend on time and state, and hence the stressed model is not a compound Poisson process. We illustrate the dynamic stress testing by considering stresses on VaR and both VaR and CVaR jointly and provide illustrations of how the stochastic process is altered under these stresses. We generalize the framework to multivariate compound Poisson processes and stresses at times other than the terminal time. We illustrate the applicability of our framework by considering “what if” scenarios, where we answer the question: What is the severity of a stress on a portfolio component at an earlier time such that the aggregate portfolio exceeds a risk threshold at the terminal time? Furthermore, for general constraints, we propose an algorithm to simulate sample paths under the stressed measure, thus allowing to compare the effects of stresses on the dynamics of the process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信