基于凝血相关基因的肺腺癌分类及免疫治疗评估。

Personalized medicine Pub Date : 2024-01-01 Epub Date: 2023-12-01 DOI:10.2217/pme-2023-0094
Yi Zhou, Wangju Fan, Jian Zhou, Shengjie Zhong, Jun Yang, Yanxia Zhong, Guoxiong Huang
{"title":"基于凝血相关基因的肺腺癌分类及免疫治疗评估。","authors":"Yi Zhou, Wangju Fan, Jian Zhou, Shengjie Zhong, Jun Yang, Yanxia Zhong, Guoxiong Huang","doi":"10.2217/pme-2023-0094","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> This study on lung adenocarcinoma (LUAD), a common lung cancer subtype with high mortality. <b>Aims:</b> This study focuses on how tumor cell interactions affect immunotherapy responsiveness. <b>Methods:</b> Using public databases, we used non-negative matrix factorization clustering method, ssGSEA, CIBERSORT algorithm, immunophenotype score, survival analysis, protein-protein interaction network method to analyze gene expression data and coagulation-related genes. <b>Results:</b> We divided LUAD patients into three coagulation-related subgroups with varying immune characteristics and survival rates. A cluster of three patients, having the highest immune infiltration and survival rate, also showed the most potential for immunotherapy. We identified five key genes influencing patient survival using a protein-protein interaction network. <b>Conclusion:</b> This research offers valuable insights for forecasting prognosis and immunotherapy responsiveness in LUAD patients, helping to inform clinical treatment strategies.</p>","PeriodicalId":94167,"journal":{"name":"Personalized medicine","volume":" ","pages":"29-44"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and immunotherapy assessment of lung adenocarcinoma based on coagulation-related genes.\",\"authors\":\"Yi Zhou, Wangju Fan, Jian Zhou, Shengjie Zhong, Jun Yang, Yanxia Zhong, Guoxiong Huang\",\"doi\":\"10.2217/pme-2023-0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> This study on lung adenocarcinoma (LUAD), a common lung cancer subtype with high mortality. <b>Aims:</b> This study focuses on how tumor cell interactions affect immunotherapy responsiveness. <b>Methods:</b> Using public databases, we used non-negative matrix factorization clustering method, ssGSEA, CIBERSORT algorithm, immunophenotype score, survival analysis, protein-protein interaction network method to analyze gene expression data and coagulation-related genes. <b>Results:</b> We divided LUAD patients into three coagulation-related subgroups with varying immune characteristics and survival rates. A cluster of three patients, having the highest immune infiltration and survival rate, also showed the most potential for immunotherapy. We identified five key genes influencing patient survival using a protein-protein interaction network. <b>Conclusion:</b> This research offers valuable insights for forecasting prognosis and immunotherapy responsiveness in LUAD patients, helping to inform clinical treatment strategies.</p>\",\"PeriodicalId\":94167,\"journal\":{\"name\":\"Personalized medicine\",\"volume\":\" \",\"pages\":\"29-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Personalized medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/pme-2023-0094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/pme-2023-0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺腺癌(LUAD)是一种常见的高死亡率的肺癌亚型。目的:本研究关注肿瘤细胞相互作用如何影响免疫治疗反应性。方法:利用公共数据库,采用非负矩阵分解聚类法、ssGSEA、CIBERSORT算法、免疫表型评分、生存分析、蛋白-蛋白相互作用网络法对基因表达数据和凝血相关基因进行分析。结果:我们将LUAD患者分为三个与凝血相关的亚组,这些亚组具有不同的免疫特征和生存率。一组3例患者的免疫浸润和生存率最高,也显示出免疫治疗的最大潜力。我们使用蛋白质-蛋白质相互作用网络确定了影响患者生存的五个关键基因。结论:本研究为预测LUAD患者的预后和免疫治疗反应性提供了有价值的见解,有助于指导临床治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and immunotherapy assessment of lung adenocarcinoma based on coagulation-related genes.

Introduction: This study on lung adenocarcinoma (LUAD), a common lung cancer subtype with high mortality. Aims: This study focuses on how tumor cell interactions affect immunotherapy responsiveness. Methods: Using public databases, we used non-negative matrix factorization clustering method, ssGSEA, CIBERSORT algorithm, immunophenotype score, survival analysis, protein-protein interaction network method to analyze gene expression data and coagulation-related genes. Results: We divided LUAD patients into three coagulation-related subgroups with varying immune characteristics and survival rates. A cluster of three patients, having the highest immune infiltration and survival rate, also showed the most potential for immunotherapy. We identified five key genes influencing patient survival using a protein-protein interaction network. Conclusion: This research offers valuable insights for forecasting prognosis and immunotherapy responsiveness in LUAD patients, helping to inform clinical treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信