{"title":"基于最优标签排列分类的分类数据双变量因果发现。","authors":"Yang Ni","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Causal discovery for quantitative data has been extensively studied but less is known for categorical data. We propose a novel causal model for categorical data based on a new classification model, termed classification with optimal label permutation (COLP). By design, COLP is a parsimonious classifier, which gives rise to a provably identifiable causal model. A simple learning algorithm via comparing likelihood functions of causal and anti-causal models suffices to learn the causal direction. Through experiments with synthetic and real data, we demonstrate the favorable performance of the proposed COLP-based causal model compared to state-of-the-art methods. We also make available an accompanying R package COLP, which contains the proposed causal discovery algorithm and a benchmark dataset of categorical cause-effect pairs.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"35 ","pages":"10837-10848"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686288/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation.\",\"authors\":\"Yang Ni\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Causal discovery for quantitative data has been extensively studied but less is known for categorical data. We propose a novel causal model for categorical data based on a new classification model, termed classification with optimal label permutation (COLP). By design, COLP is a parsimonious classifier, which gives rise to a provably identifiable causal model. A simple learning algorithm via comparing likelihood functions of causal and anti-causal models suffices to learn the causal direction. Through experiments with synthetic and real data, we demonstrate the favorable performance of the proposed COLP-based causal model compared to state-of-the-art methods. We also make available an accompanying R package COLP, which contains the proposed causal discovery algorithm and a benchmark dataset of categorical cause-effect pairs.</p>\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"35 \",\"pages\":\"10837-10848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686288/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation.
Causal discovery for quantitative data has been extensively studied but less is known for categorical data. We propose a novel causal model for categorical data based on a new classification model, termed classification with optimal label permutation (COLP). By design, COLP is a parsimonious classifier, which gives rise to a provably identifiable causal model. A simple learning algorithm via comparing likelihood functions of causal and anti-causal models suffices to learn the causal direction. Through experiments with synthetic and real data, we demonstrate the favorable performance of the proposed COLP-based causal model compared to state-of-the-art methods. We also make available an accompanying R package COLP, which contains the proposed causal discovery algorithm and a benchmark dataset of categorical cause-effect pairs.