分离网在位移等价方面的散度。

Pub Date : 2024-01-01 Epub Date: 2023-11-17 DOI:10.1007/s10711-023-00862-3
Michael Dymond, Vojtěch Kaluža
{"title":"分离网在位移等价方面的散度。","authors":"Michael Dymond, Vojtěch Kaluža","doi":"10.1007/s10711-023-00862-3","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a hierarchy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions <math><mrow><mi>ϕ</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math>. Two separated nets are called <math><mi>ϕ</mi></math>-<i>displacement equivalent</i> if, roughly speaking, there is a bijection between them which, for large radii <i>R</i>, displaces points of norm at most <i>R</i> by something of order at most <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math>. We show that the spectrum of <math><mi>ϕ</mi></math>-displacement equivalence spans from the established notion of <i>bounded displacement equivalence</i>, which corresponds to bounded <math><mi>ϕ</mi></math>, to the indiscrete equivalence relation, corresponding to <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>∈</mo><mi>Ω</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math>, in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of <math><mi>ϕ</mi></math>-displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math> for <math><mrow><mi>R</mi><mo>→</mo><mi>∞</mi></mrow></math>. We further undertake a comparison of our notion of <math><mi>ϕ</mi></math>-displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of <math><mi>ϕ</mi></math>-displacement equivalence with that of <i>bilipschitz equivalence</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656347/pdf/","citationCount":"2","resultStr":"{\"title\":\"Divergence of separated nets with respect to displacement equivalence.\",\"authors\":\"Michael Dymond, Vojtěch Kaluža\",\"doi\":\"10.1007/s10711-023-00862-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a hierarchy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions <math><mrow><mi>ϕ</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math>. Two separated nets are called <math><mi>ϕ</mi></math>-<i>displacement equivalent</i> if, roughly speaking, there is a bijection between them which, for large radii <i>R</i>, displaces points of norm at most <i>R</i> by something of order at most <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math>. We show that the spectrum of <math><mi>ϕ</mi></math>-displacement equivalence spans from the established notion of <i>bounded displacement equivalence</i>, which corresponds to bounded <math><mi>ϕ</mi></math>, to the indiscrete equivalence relation, corresponding to <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>∈</mo><mi>Ω</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math>, in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of <math><mi>ϕ</mi></math>-displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math> for <math><mrow><mi>R</mi><mo>→</mo><mi>∞</mi></mrow></math>. We further undertake a comparison of our notion of <math><mi>ϕ</mi></math>-displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of <math><mi>ϕ</mi></math>-displacement equivalence with that of <i>bilipschitz equivalence</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656347/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00862-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00862-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们在给定欧几里德空间的分离网集合上引入了等价关系的层次,以凹递增函数φ:(0,∞)→(0,∞)为索引。如果两个分离的网之间有一个双射,粗略地说,在它们之间有一个双射,对于大半径R,用至多φ (R)的阶来置换至多R范数的点,则称为ϕ-位移等效网。我们表明,从已有的有界位移等价的概念(对应于有界的φ)到不连续等价关系(对应于φ (R)∈Ω(R)),其中所有分离的网都是等价的),ϕ-位移等价的谱跨越。在这个频谱的两端之间,对于R→∞的φ (R)的渐近类,证明了ϕ-位移等价的概念是两两不同的。我们进一步将我们的概念与以前研究过的分离网上的关系进行了比较。特别注意了与毕利普希茨等效概念之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Divergence of separated nets with respect to displacement equivalence.

分享
查看原文
Divergence of separated nets with respect to displacement equivalence.

We introduce a hierarchy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions ϕ:(0,)(0,). Two separated nets are called ϕ-displacement equivalent if, roughly speaking, there is a bijection between them which, for large radii R, displaces points of norm at most R by something of order at most ϕ(R). We show that the spectrum of ϕ-displacement equivalence spans from the established notion of bounded displacement equivalence, which corresponds to bounded ϕ, to the indiscrete equivalence relation, corresponding to ϕ(R)Ω(R), in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of ϕ-displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of ϕ(R) for R. We further undertake a comparison of our notion of ϕ-displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of ϕ-displacement equivalence with that of bilipschitz equivalence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信