基于人的注意力引导多尺度模型的人脸检测。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Marinella Cadoni, Andrea Lagorio, Enrico Grosso
{"title":"基于人的注意力引导多尺度模型的人脸检测。","authors":"Marinella Cadoni, Andrea Lagorio, Enrico Grosso","doi":"10.1007/s00422-023-00978-5","DOIUrl":null,"url":null,"abstract":"<p><p>Multiscale models are among the cutting-edge technologies used for face detection and recognition. An example is Deformable part-based models (DPMs), which encode a face as a multiplicity of local areas (parts) at different resolution scales and their hierarchical and spatial relationship. Although these models have proven successful and incredibly efficient in practical applications, the mutual position and spatial resolution of the parts involved are arbitrarily defined by a human specialist and the final choice of the optimal scales and parts is based on heuristics. This work seeks to understand whether a multi-scale model can take inspiration from human fixations to select specific areas and spatial scales. In more detail, it shows that a multi-scale pyramid representation can be adopted to extract interesting points, and that human attention can be used to select the points at the scales that lead to the best face detection performance. Human fixations can therefore provide a valid methodological basis on which to build a multiscale model, by selecting the spatial scales and areas of interest that are most relevant to humans.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752920/pdf/","citationCount":"0","resultStr":"{\"title\":\"Face detection based on a human attention guided multi-scale model.\",\"authors\":\"Marinella Cadoni, Andrea Lagorio, Enrico Grosso\",\"doi\":\"10.1007/s00422-023-00978-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiscale models are among the cutting-edge technologies used for face detection and recognition. An example is Deformable part-based models (DPMs), which encode a face as a multiplicity of local areas (parts) at different resolution scales and their hierarchical and spatial relationship. Although these models have proven successful and incredibly efficient in practical applications, the mutual position and spatial resolution of the parts involved are arbitrarily defined by a human specialist and the final choice of the optimal scales and parts is based on heuristics. This work seeks to understand whether a multi-scale model can take inspiration from human fixations to select specific areas and spatial scales. In more detail, it shows that a multi-scale pyramid representation can be adopted to extract interesting points, and that human attention can be used to select the points at the scales that lead to the best face detection performance. Human fixations can therefore provide a valid methodological basis on which to build a multiscale model, by selecting the spatial scales and areas of interest that are most relevant to humans.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-023-00978-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-023-00978-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

多尺度模型是用于人脸检测和识别的尖端技术之一。一个例子是可变形零件模型(dpm),它将人脸编码为不同分辨率尺度的多个局部区域(零件)及其层次和空间关系。尽管这些模型在实际应用中已经被证明是成功的和令人难以置信的高效,但所涉及的部件的相互位置和空间分辨率是由人类专家任意定义的,并且最终选择的最佳尺度和部件是基于启发式的。这项工作旨在了解多尺度模型是否可以从人类的注视中获得灵感,以选择特定的区域和空间尺度。更详细地说,它表明可以采用多尺度金字塔表示来提取感兴趣的点,并且可以利用人类的注意力来选择导致最佳人脸检测性能的尺度上的点。因此,通过选择与人类最相关的空间尺度和感兴趣的领域,人类的注视可以为建立多尺度模型提供有效的方法基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Face detection based on a human attention guided multi-scale model.

Face detection based on a human attention guided multi-scale model.

Multiscale models are among the cutting-edge technologies used for face detection and recognition. An example is Deformable part-based models (DPMs), which encode a face as a multiplicity of local areas (parts) at different resolution scales and their hierarchical and spatial relationship. Although these models have proven successful and incredibly efficient in practical applications, the mutual position and spatial resolution of the parts involved are arbitrarily defined by a human specialist and the final choice of the optimal scales and parts is based on heuristics. This work seeks to understand whether a multi-scale model can take inspiration from human fixations to select specific areas and spatial scales. In more detail, it shows that a multi-scale pyramid representation can be adopted to extract interesting points, and that human attention can be used to select the points at the scales that lead to the best face detection performance. Human fixations can therefore provide a valid methodological basis on which to build a multiscale model, by selecting the spatial scales and areas of interest that are most relevant to humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信