Laura H Holst, Niklas G Madsen, Freja T Toftgård, Freja Rønne, Ioana-Malina Moise, Evamaria I Petersen, Peter Fojan
{"title":"聚碳酸酯水解酶的新设计。","authors":"Laura H Holst, Niklas G Madsen, Freja T Toftgård, Freja Rønne, Ioana-Malina Moise, Evamaria I Petersen, Peter Fojan","doi":"10.1093/protein/gzad022","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic degradation of plastics is currently limited to the use of engineered natural enzymes. As of yet, all engineering approaches applied to plastic degrading enzymes retain the natural $\\alpha /\\beta $-fold. While mutations can be used to increase thermostability, an inherent maximum likely exists for the $\\alpha /\\beta $-fold. It is thus of interest to introduce catalytic activity toward plastics in a different protein fold to escape the sequence space of plastic degrading enzymes. Here, a method for designing highly thermostable enzymes that can degrade plastics is described. With the help of Rosetta an active site catalysing the hydrolysis of polycarbonate is introduced into a set of thermostable scaffolds. Through computational evaluation, a potential PCase was selected and produced recombinantly in Escherichia coli. Thermal analysis suggests that the design has a melting temperature of >95$^{\\circ }$C. Activity toward polycarbonate was confirmed using atomic force spectroscopy (AFM), proving the successful design of a PCase.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De novo design of a polycarbonate hydrolase.\",\"authors\":\"Laura H Holst, Niklas G Madsen, Freja T Toftgård, Freja Rønne, Ioana-Malina Moise, Evamaria I Petersen, Peter Fojan\",\"doi\":\"10.1093/protein/gzad022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymatic degradation of plastics is currently limited to the use of engineered natural enzymes. As of yet, all engineering approaches applied to plastic degrading enzymes retain the natural $\\\\alpha /\\\\beta $-fold. While mutations can be used to increase thermostability, an inherent maximum likely exists for the $\\\\alpha /\\\\beta $-fold. It is thus of interest to introduce catalytic activity toward plastics in a different protein fold to escape the sequence space of plastic degrading enzymes. Here, a method for designing highly thermostable enzymes that can degrade plastics is described. With the help of Rosetta an active site catalysing the hydrolysis of polycarbonate is introduced into a set of thermostable scaffolds. Through computational evaluation, a potential PCase was selected and produced recombinantly in Escherichia coli. Thermal analysis suggests that the design has a melting temperature of >95$^{\\\\circ }$C. Activity toward polycarbonate was confirmed using atomic force spectroscopy (AFM), proving the successful design of a PCase.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzad022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzad022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Enzymatic degradation of plastics is currently limited to the use of engineered natural enzymes. As of yet, all engineering approaches applied to plastic degrading enzymes retain the natural $\alpha /\beta $-fold. While mutations can be used to increase thermostability, an inherent maximum likely exists for the $\alpha /\beta $-fold. It is thus of interest to introduce catalytic activity toward plastics in a different protein fold to escape the sequence space of plastic degrading enzymes. Here, a method for designing highly thermostable enzymes that can degrade plastics is described. With the help of Rosetta an active site catalysing the hydrolysis of polycarbonate is introduced into a set of thermostable scaffolds. Through computational evaluation, a potential PCase was selected and produced recombinantly in Escherichia coli. Thermal analysis suggests that the design has a melting temperature of >95$^{\circ }$C. Activity toward polycarbonate was confirmed using atomic force spectroscopy (AFM), proving the successful design of a PCase.