基于涡轮技术的开源低成本通风机的研制。

Q3 Engineering
Bashar Al-Haj Moh'd
{"title":"基于涡轮技术的开源低成本通风机的研制。","authors":"Bashar Al-Haj Moh'd","doi":"10.1080/03091902.2023.2286945","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has revealed numerous global health system deficits, even in developed countries. The high cost and shortage of treatment, health care, and medical devices are the reasons. Aside from new mutations, the availability of respirators is an urgent concern, especially in developing countries. Even after the pandemic, respiratory diseases are among the most prevalent diseases. Researchers can help reduce treatment costs by offering scalable, open-source solutions that are manufacturable. Since March 2020, serious efforts have been made to reduce the problems caused by the lack of respirators at the lowest possible cost. In this research paper, a unique and integrated solution for a fully automatic ventilator is presented and described. The design considers the cost, speed of assembly, safety, ease of use, robustness, portability issues, and scalability to fit all requirements for emergency ventilation. Furthermore, the device was developed using turbine technology to generate air pressure. The work describes a low-cost alternative ventilator that uses a novel proportional-valve approach to control oxygen mixing process, control circuit, and control algorithm. The current software supports pressure mode controllers, and it can be upgraded to volume-mode or dual mode without any modifications in the hardware. In addition, the hardware, particularly the electronic circuit, has idle input/output ports for further development. Based on the evaluations of the developed ventilator using an artificial lung, the system exhibited acceptable accuracy regarding to the pressure, leak compensation, and oxygen concentration levels. The designated safety conditions have been met, and the safety alarms tripped according to any violations. Moreover, all design files are provided with clear instructions to rebuild the device, despite the complexity of electronics assembly. The system can be described as a development kit, which can shorten the time for researchers/manufacturers to develop a device equivalent to the expensive devices available in the market.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing of an open-source low-cost ventilator based on turbine technology.\",\"authors\":\"Bashar Al-Haj Moh'd\",\"doi\":\"10.1080/03091902.2023.2286945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has revealed numerous global health system deficits, even in developed countries. The high cost and shortage of treatment, health care, and medical devices are the reasons. Aside from new mutations, the availability of respirators is an urgent concern, especially in developing countries. Even after the pandemic, respiratory diseases are among the most prevalent diseases. Researchers can help reduce treatment costs by offering scalable, open-source solutions that are manufacturable. Since March 2020, serious efforts have been made to reduce the problems caused by the lack of respirators at the lowest possible cost. In this research paper, a unique and integrated solution for a fully automatic ventilator is presented and described. The design considers the cost, speed of assembly, safety, ease of use, robustness, portability issues, and scalability to fit all requirements for emergency ventilation. Furthermore, the device was developed using turbine technology to generate air pressure. The work describes a low-cost alternative ventilator that uses a novel proportional-valve approach to control oxygen mixing process, control circuit, and control algorithm. The current software supports pressure mode controllers, and it can be upgraded to volume-mode or dual mode without any modifications in the hardware. In addition, the hardware, particularly the electronic circuit, has idle input/output ports for further development. Based on the evaluations of the developed ventilator using an artificial lung, the system exhibited acceptable accuracy regarding to the pressure, leak compensation, and oxygen concentration levels. The designated safety conditions have been met, and the safety alarms tripped according to any violations. Moreover, all design files are provided with clear instructions to rebuild the device, despite the complexity of electronics assembly. The system can be described as a development kit, which can shorten the time for researchers/manufacturers to develop a device equivalent to the expensive devices available in the market.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2023.2286945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2023.2286945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19大流行暴露了全球卫生系统的许多缺陷,即使在发达国家也是如此。治疗、卫生保健和医疗设备的高成本和短缺是原因。除了新的突变外,呼吸器的可获得性是一个紧迫的问题,特别是在发展中国家。即使在大流行之后,呼吸系统疾病仍是最流行的疾病之一。研究人员可以通过提供可扩展的、可制造的开源解决方案来帮助降低治疗成本。自2020年3月以来,我们一直在努力以尽可能低的成本减少因缺乏呼吸器而引起的问题。在这篇研究论文中,提出并描述了一种独特的、集成的全自动呼吸机解决方案。该设计考虑了成本、装配速度、安全性、易用性、稳健性、便携性问题和可扩展性,以适应紧急通风的所有要求。此外,该装置采用涡轮技术来产生空气压力。这项工作描述了一种低成本的替代呼吸机,它使用一种新的比例阀方法来控制氧气混合过程、控制电路和控制算法。目前的软件支持压力模式控制器,它可以升级到音量模式或双模式,而无需修改硬件。此外,硬件,特别是电子电路,有空闲的输入/输出端口供进一步开发。基于对使用人工肺的开发呼吸机的评估,该系统在压力、泄漏补偿和氧气浓度水平方面表现出可接受的准确性。已满足指定的安全条件,如有违规,安全警报会触发。此外,尽管电子组装很复杂,但所有设计文件都提供了重建设备的明确说明。该系统可以被描述为一个开发工具包,它可以缩短研究人员/制造商开发相当于市场上昂贵设备的设备的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing of an open-source low-cost ventilator based on turbine technology.

The COVID-19 pandemic has revealed numerous global health system deficits, even in developed countries. The high cost and shortage of treatment, health care, and medical devices are the reasons. Aside from new mutations, the availability of respirators is an urgent concern, especially in developing countries. Even after the pandemic, respiratory diseases are among the most prevalent diseases. Researchers can help reduce treatment costs by offering scalable, open-source solutions that are manufacturable. Since March 2020, serious efforts have been made to reduce the problems caused by the lack of respirators at the lowest possible cost. In this research paper, a unique and integrated solution for a fully automatic ventilator is presented and described. The design considers the cost, speed of assembly, safety, ease of use, robustness, portability issues, and scalability to fit all requirements for emergency ventilation. Furthermore, the device was developed using turbine technology to generate air pressure. The work describes a low-cost alternative ventilator that uses a novel proportional-valve approach to control oxygen mixing process, control circuit, and control algorithm. The current software supports pressure mode controllers, and it can be upgraded to volume-mode or dual mode without any modifications in the hardware. In addition, the hardware, particularly the electronic circuit, has idle input/output ports for further development. Based on the evaluations of the developed ventilator using an artificial lung, the system exhibited acceptable accuracy regarding to the pressure, leak compensation, and oxygen concentration levels. The designated safety conditions have been met, and the safety alarms tripped according to any violations. Moreover, all design files are provided with clear instructions to rebuild the device, despite the complexity of electronics assembly. The system can be described as a development kit, which can shorten the time for researchers/manufacturers to develop a device equivalent to the expensive devices available in the market.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信