Valentin Braun, Uta Ceglarek, Alexander Gaudl, Joanna Gawinecka, Daniel Müller, Manfred Rauh, Matthias Weber, Christoph Seger
{"title":"评价5种用于常规临床分析的多类固醇LC-MS /MS方法:对9种分析物获得了可比较的性能。","authors":"Valentin Braun, Uta Ceglarek, Alexander Gaudl, Joanna Gawinecka, Daniel Müller, Manfred Rauh, Matthias Weber, Christoph Seger","doi":"10.1515/cclm-2023-0847","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>A mass spectrometry (LC‒MS/MS)-based interlaboratory comparison study was performed for nine steroid analytes with five participating laboratories. The sample set contained 40 pooled samples of human serum generated from preanalyzed leftovers. To obtain a well-balanced distribution across reference intervals of each steroid, the leftovers first underwent a targeted mixing step.</p><p><strong>Methods: </strong>All participants measured a sample set once using their own multianalyte protocols and calibrators. Four participants used in-house developed measurement platforms, including IVD-CE certified calibrators, which were used by three participants; the 5th lab used the whole LC‒MS kit from an IVD manufacturer. All labs reported results for 17-hydroxyprogesterone, androstenedione, cortisol, and testosterone, and four labs reported results for 11-deoxycortisol, corticosterone, cortisone, dehydroepiandrosterone sulfate (DHEAS), and progesterone.</p><p><strong>Results: </strong>Good or acceptable overall comparability was found in Bland‒Altman and Passing‒Bablok analyses. Mean bias against the overall mean remained less than ±10 % except for DHEAS, androstenedione, and progesterone at one site and for cortisol and corticosterone at two sites (max. -18.9 % for androstenedione). The main analytical problems unraveled by this study included a bias not previously identified in proficiency testing, operator errors, non-supported matrix types and higher inaccuracy and imprecision at lower ends of measuring intervals.</p><p><strong>Conclusions: </strong>This study shows that intermethod comparison is essential for monitoring the validity of an assay and should serve as an example of how external quality assessment could work in addition to organized proficiency testing schemes.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":"900-910"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of five multisteroid LC‒MS/MS methods used for routine clinical analysis: comparable performance was obtained for nine analytes.\",\"authors\":\"Valentin Braun, Uta Ceglarek, Alexander Gaudl, Joanna Gawinecka, Daniel Müller, Manfred Rauh, Matthias Weber, Christoph Seger\",\"doi\":\"10.1515/cclm-2023-0847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>A mass spectrometry (LC‒MS/MS)-based interlaboratory comparison study was performed for nine steroid analytes with five participating laboratories. The sample set contained 40 pooled samples of human serum generated from preanalyzed leftovers. To obtain a well-balanced distribution across reference intervals of each steroid, the leftovers first underwent a targeted mixing step.</p><p><strong>Methods: </strong>All participants measured a sample set once using their own multianalyte protocols and calibrators. Four participants used in-house developed measurement platforms, including IVD-CE certified calibrators, which were used by three participants; the 5th lab used the whole LC‒MS kit from an IVD manufacturer. All labs reported results for 17-hydroxyprogesterone, androstenedione, cortisol, and testosterone, and four labs reported results for 11-deoxycortisol, corticosterone, cortisone, dehydroepiandrosterone sulfate (DHEAS), and progesterone.</p><p><strong>Results: </strong>Good or acceptable overall comparability was found in Bland‒Altman and Passing‒Bablok analyses. Mean bias against the overall mean remained less than ±10 % except for DHEAS, androstenedione, and progesterone at one site and for cortisol and corticosterone at two sites (max. -18.9 % for androstenedione). The main analytical problems unraveled by this study included a bias not previously identified in proficiency testing, operator errors, non-supported matrix types and higher inaccuracy and imprecision at lower ends of measuring intervals.</p><p><strong>Conclusions: </strong>This study shows that intermethod comparison is essential for monitoring the validity of an assay and should serve as an example of how external quality assessment could work in addition to organized proficiency testing schemes.</p>\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":\" \",\"pages\":\"900-910\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2023-0847\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/25 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2023-0847","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/25 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Evaluation of five multisteroid LC‒MS/MS methods used for routine clinical analysis: comparable performance was obtained for nine analytes.
Objectives: A mass spectrometry (LC‒MS/MS)-based interlaboratory comparison study was performed for nine steroid analytes with five participating laboratories. The sample set contained 40 pooled samples of human serum generated from preanalyzed leftovers. To obtain a well-balanced distribution across reference intervals of each steroid, the leftovers first underwent a targeted mixing step.
Methods: All participants measured a sample set once using their own multianalyte protocols and calibrators. Four participants used in-house developed measurement platforms, including IVD-CE certified calibrators, which were used by three participants; the 5th lab used the whole LC‒MS kit from an IVD manufacturer. All labs reported results for 17-hydroxyprogesterone, androstenedione, cortisol, and testosterone, and four labs reported results for 11-deoxycortisol, corticosterone, cortisone, dehydroepiandrosterone sulfate (DHEAS), and progesterone.
Results: Good or acceptable overall comparability was found in Bland‒Altman and Passing‒Bablok analyses. Mean bias against the overall mean remained less than ±10 % except for DHEAS, androstenedione, and progesterone at one site and for cortisol and corticosterone at two sites (max. -18.9 % for androstenedione). The main analytical problems unraveled by this study included a bias not previously identified in proficiency testing, operator errors, non-supported matrix types and higher inaccuracy and imprecision at lower ends of measuring intervals.
Conclusions: This study shows that intermethod comparison is essential for monitoring the validity of an assay and should serve as an example of how external quality assessment could work in addition to organized proficiency testing schemes.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!