{"title":"SNHG3/WISP2轴通过激活Wnt/β-Catenin信号传导促进Hela细胞迁移和侵袭","authors":"Dengfei Xu, Hao Feng, Zirui Ren, Xiang Li, Chenyang Jiang, Yuming Chen, Lina Liu, Wenchao Chen, Zhilei Cui, Shundong Cang","doi":"10.21873/cgp.20421","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Cervical cancer (CC) poses a significant threat to women's health and has a relatively poor prognosis due to local invasion and metastasis. It is, therefore, crucial to elucidate the molecular mechanisms of CC metastasis. SNHG3 has been implicated in various tumor metastasis processes, but its involvement in CC has not been thoroughly studied. Our study aimed to investigate the role of SNHG3 in metastasis and elucidate its underlying mechanisms in CC.</p><p><strong>Materials and methods: </strong>LncRNA SNHG3 expression in CC tissues was analyzed using TCGA and GSE27469 databases. Normal cervical epithelial cells and CC cell lines were used to detect mRNA expression of SNHG3 via quantitative reverse transcription polymerase chain reaction (qRT-PCR). With RNA interference (RNAi) technology, antisense oligonucleotides (ASO) can act on HeLa cells to knockdown target gene expression. The influence of SNHG3 on cell migration and invasion were determined by wound healing and transwell assays. Transcriptome sequencing (RNA-seq) was used to seek abnormally expressed genes between SNHG3 knockdown cells and control cells. The expressions of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling related proteins were detected using western blot.</p><p><strong>Results: </strong>SNHG3 was obviously up-regulated in CC tissues and cell lines, and ectopic expression of SNHG3 was associated with lymph node metastasis of CC. Knockdown of SNHG3 significantly inhibited cell migration and invasion in CC. Further molecular mechanism studies showed that SNHG3 knockdown could down-regulate the expression of WNT1 Inducible Signaling Pathway Protein 2 (WISP2) so as to inhibit the activation of the Wnt/β-catenin signaling pathway, and regulated the expression of EMT-related markers, that promoted the protein expression of E-cadherin, as well as decreased the expression of N-cadherin and vimentin.</p><p><strong>Conclusion: </strong>SNHG3 appears to exert a pro-metastatic effect in CC, as evidenced by inhibition of cell migration and invasion upon SNHG3 knockdown. EMT also appears to be attenuated. Of interest is the down-regulation of WISP2 following SNHG3 knockdown leads to the inactivation of the Wnt/β-catenin signaling pathway.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"20 6suppl","pages":"744-753"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687733/pdf/","citationCount":"0","resultStr":"{\"title\":\"SNHG3/WISP2 Axis Promotes Hela Cell Migration and Invasion <i>via</i> Activating Wnt/β-Catenin Signaling.\",\"authors\":\"Dengfei Xu, Hao Feng, Zirui Ren, Xiang Li, Chenyang Jiang, Yuming Chen, Lina Liu, Wenchao Chen, Zhilei Cui, Shundong Cang\",\"doi\":\"10.21873/cgp.20421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Cervical cancer (CC) poses a significant threat to women's health and has a relatively poor prognosis due to local invasion and metastasis. It is, therefore, crucial to elucidate the molecular mechanisms of CC metastasis. SNHG3 has been implicated in various tumor metastasis processes, but its involvement in CC has not been thoroughly studied. Our study aimed to investigate the role of SNHG3 in metastasis and elucidate its underlying mechanisms in CC.</p><p><strong>Materials and methods: </strong>LncRNA SNHG3 expression in CC tissues was analyzed using TCGA and GSE27469 databases. Normal cervical epithelial cells and CC cell lines were used to detect mRNA expression of SNHG3 via quantitative reverse transcription polymerase chain reaction (qRT-PCR). With RNA interference (RNAi) technology, antisense oligonucleotides (ASO) can act on HeLa cells to knockdown target gene expression. The influence of SNHG3 on cell migration and invasion were determined by wound healing and transwell assays. Transcriptome sequencing (RNA-seq) was used to seek abnormally expressed genes between SNHG3 knockdown cells and control cells. The expressions of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling related proteins were detected using western blot.</p><p><strong>Results: </strong>SNHG3 was obviously up-regulated in CC tissues and cell lines, and ectopic expression of SNHG3 was associated with lymph node metastasis of CC. Knockdown of SNHG3 significantly inhibited cell migration and invasion in CC. Further molecular mechanism studies showed that SNHG3 knockdown could down-regulate the expression of WNT1 Inducible Signaling Pathway Protein 2 (WISP2) so as to inhibit the activation of the Wnt/β-catenin signaling pathway, and regulated the expression of EMT-related markers, that promoted the protein expression of E-cadherin, as well as decreased the expression of N-cadherin and vimentin.</p><p><strong>Conclusion: </strong>SNHG3 appears to exert a pro-metastatic effect in CC, as evidenced by inhibition of cell migration and invasion upon SNHG3 knockdown. EMT also appears to be attenuated. Of interest is the down-regulation of WISP2 following SNHG3 knockdown leads to the inactivation of the Wnt/β-catenin signaling pathway.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"20 6suppl\",\"pages\":\"744-753\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
SNHG3/WISP2 Axis Promotes Hela Cell Migration and Invasion via Activating Wnt/β-Catenin Signaling.
Background/aim: Cervical cancer (CC) poses a significant threat to women's health and has a relatively poor prognosis due to local invasion and metastasis. It is, therefore, crucial to elucidate the molecular mechanisms of CC metastasis. SNHG3 has been implicated in various tumor metastasis processes, but its involvement in CC has not been thoroughly studied. Our study aimed to investigate the role of SNHG3 in metastasis and elucidate its underlying mechanisms in CC.
Materials and methods: LncRNA SNHG3 expression in CC tissues was analyzed using TCGA and GSE27469 databases. Normal cervical epithelial cells and CC cell lines were used to detect mRNA expression of SNHG3 via quantitative reverse transcription polymerase chain reaction (qRT-PCR). With RNA interference (RNAi) technology, antisense oligonucleotides (ASO) can act on HeLa cells to knockdown target gene expression. The influence of SNHG3 on cell migration and invasion were determined by wound healing and transwell assays. Transcriptome sequencing (RNA-seq) was used to seek abnormally expressed genes between SNHG3 knockdown cells and control cells. The expressions of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling related proteins were detected using western blot.
Results: SNHG3 was obviously up-regulated in CC tissues and cell lines, and ectopic expression of SNHG3 was associated with lymph node metastasis of CC. Knockdown of SNHG3 significantly inhibited cell migration and invasion in CC. Further molecular mechanism studies showed that SNHG3 knockdown could down-regulate the expression of WNT1 Inducible Signaling Pathway Protein 2 (WISP2) so as to inhibit the activation of the Wnt/β-catenin signaling pathway, and regulated the expression of EMT-related markers, that promoted the protein expression of E-cadherin, as well as decreased the expression of N-cadherin and vimentin.
Conclusion: SNHG3 appears to exert a pro-metastatic effect in CC, as evidenced by inhibition of cell migration and invasion upon SNHG3 knockdown. EMT also appears to be attenuated. Of interest is the down-regulation of WISP2 following SNHG3 knockdown leads to the inactivation of the Wnt/β-catenin signaling pathway.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.