Haitao Jiang, Qiuyu Tang, Dexin Zheng, Yunkai Gu, Cheng Man
{"title":"甲状旁腺激素增强间充质干细胞对大鼠颞下颌关节骨性关节炎的治疗作用。","authors":"Haitao Jiang, Qiuyu Tang, Dexin Zheng, Yunkai Gu, Cheng Man","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the joint, which is characterized by injury to the articular cartilage, as well as changes in the synovial and subchondral bone. TMJOA has a high incidence rate, without any effective treatment. Despite the therapeutic potential of mesenchymal stem cells (MSCs) in various diseases, their efficacy in treating TMJOA is constrained by the local hypoxic conditions and elevated reactive oxygen species (ROS) environment within the damaged temporomandibular joint. In recent years, many studies have reported that parathyroid hormone (PTH) can effectively treat TMJOA, and has an important impact on MSC differentiation. Therefore, we hypothesized that PTH may influence the potential of MSCs, thereby improving their therapeutic effect on TMJOA.</p><p><strong>Methods: </strong>First, we isolated and cultured rat bone marrow MSCs, and evaluated their proliferation and differentiation after adding PTH. Next, the <i>in vitro</i> environment of hypoxia and high ROS was established by hypoxia condition and H<sub>2</sub>O<sub>2</sub> treatment, and the resistance of PTH-treated MSCs to hypoxia and ROS was subsequently investigated. Finally, PTH-treated MSCs were used to treat TMJOA in a rat model to evaluate the efficacy of PTH.</p><p><strong>Results: </strong>PTH enhanced the proliferation ability of MSCs, promoted the osteogenic differentiation of MSCs, and improved the tolerance of MSCs to hypoxia and ROS. Finally, the therapeutic effect of PTH-treated MSCs on TMJOA was significantly improved.</p><p><strong>Conclusion: </strong>PTH enhances the therapeutic effect of MSCs on TMJOA in rats.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"12 4","pages":"73-82"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658131/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parathyroid hormone enhances the therapeutic effect of mesenchymal stem cells on temporomandibular joint osteoarthritis in rats.\",\"authors\":\"Haitao Jiang, Qiuyu Tang, Dexin Zheng, Yunkai Gu, Cheng Man\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the joint, which is characterized by injury to the articular cartilage, as well as changes in the synovial and subchondral bone. TMJOA has a high incidence rate, without any effective treatment. Despite the therapeutic potential of mesenchymal stem cells (MSCs) in various diseases, their efficacy in treating TMJOA is constrained by the local hypoxic conditions and elevated reactive oxygen species (ROS) environment within the damaged temporomandibular joint. In recent years, many studies have reported that parathyroid hormone (PTH) can effectively treat TMJOA, and has an important impact on MSC differentiation. Therefore, we hypothesized that PTH may influence the potential of MSCs, thereby improving their therapeutic effect on TMJOA.</p><p><strong>Methods: </strong>First, we isolated and cultured rat bone marrow MSCs, and evaluated their proliferation and differentiation after adding PTH. Next, the <i>in vitro</i> environment of hypoxia and high ROS was established by hypoxia condition and H<sub>2</sub>O<sub>2</sub> treatment, and the resistance of PTH-treated MSCs to hypoxia and ROS was subsequently investigated. Finally, PTH-treated MSCs were used to treat TMJOA in a rat model to evaluate the efficacy of PTH.</p><p><strong>Results: </strong>PTH enhanced the proliferation ability of MSCs, promoted the osteogenic differentiation of MSCs, and improved the tolerance of MSCs to hypoxia and ROS. Finally, the therapeutic effect of PTH-treated MSCs on TMJOA was significantly improved.</p><p><strong>Conclusion: </strong>PTH enhances the therapeutic effect of MSCs on TMJOA in rats.</p>\",\"PeriodicalId\":7657,\"journal\":{\"name\":\"American journal of stem cells\",\"volume\":\"12 4\",\"pages\":\"73-82\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of stem cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Parathyroid hormone enhances the therapeutic effect of mesenchymal stem cells on temporomandibular joint osteoarthritis in rats.
Objectives: Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the joint, which is characterized by injury to the articular cartilage, as well as changes in the synovial and subchondral bone. TMJOA has a high incidence rate, without any effective treatment. Despite the therapeutic potential of mesenchymal stem cells (MSCs) in various diseases, their efficacy in treating TMJOA is constrained by the local hypoxic conditions and elevated reactive oxygen species (ROS) environment within the damaged temporomandibular joint. In recent years, many studies have reported that parathyroid hormone (PTH) can effectively treat TMJOA, and has an important impact on MSC differentiation. Therefore, we hypothesized that PTH may influence the potential of MSCs, thereby improving their therapeutic effect on TMJOA.
Methods: First, we isolated and cultured rat bone marrow MSCs, and evaluated their proliferation and differentiation after adding PTH. Next, the in vitro environment of hypoxia and high ROS was established by hypoxia condition and H2O2 treatment, and the resistance of PTH-treated MSCs to hypoxia and ROS was subsequently investigated. Finally, PTH-treated MSCs were used to treat TMJOA in a rat model to evaluate the efficacy of PTH.
Results: PTH enhanced the proliferation ability of MSCs, promoted the osteogenic differentiation of MSCs, and improved the tolerance of MSCs to hypoxia and ROS. Finally, the therapeutic effect of PTH-treated MSCs on TMJOA was significantly improved.
Conclusion: PTH enhances the therapeutic effect of MSCs on TMJOA in rats.