Hans-Peter Piepho, Johannes Forkman, Waqas Ahmed Malik
{"title":"网络元分析中证据分裂模型的REML方法。","authors":"Hans-Peter Piepho, Johannes Forkman, Waqas Ahmed Malik","doi":"10.1002/jrsm.1679","DOIUrl":null,"url":null,"abstract":"<p>Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for heterogeneity appears in both the mean and the variance structure. Thus, full maximum likelihood (ML) has been proposed for estimating the parameters of this model. Maximum likelihood is known to yield biased variance component estimates in linear mixed models, and this problem is expected to also affect the ES model. The purpose of the present paper, therefore, is to propose a method based on residual (or restricted) maximum likelihood (REML). Our simulation shows that this new method is quite competitive to methods based on full ML in terms of bias and mean squared error. In addition, some limitations of the ES model are discussed. While this model splits direct and indirect evidence, it is not a plausible model for the cause of inconsistency.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 2","pages":"198-212"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1679","citationCount":"0","resultStr":"{\"title\":\"A REML method for the evidence-splitting model in network meta-analysis\",\"authors\":\"Hans-Peter Piepho, Johannes Forkman, Waqas Ahmed Malik\",\"doi\":\"10.1002/jrsm.1679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for heterogeneity appears in both the mean and the variance structure. Thus, full maximum likelihood (ML) has been proposed for estimating the parameters of this model. Maximum likelihood is known to yield biased variance component estimates in linear mixed models, and this problem is expected to also affect the ES model. The purpose of the present paper, therefore, is to propose a method based on residual (or restricted) maximum likelihood (REML). Our simulation shows that this new method is quite competitive to methods based on full ML in terms of bias and mean squared error. In addition, some limitations of the ES model are discussed. While this model splits direct and indirect evidence, it is not a plausible model for the cause of inconsistency.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 2\",\"pages\":\"198-212\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1679\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1679\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1679","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A REML method for the evidence-splitting model in network meta-analysis
Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for heterogeneity appears in both the mean and the variance structure. Thus, full maximum likelihood (ML) has been proposed for estimating the parameters of this model. Maximum likelihood is known to yield biased variance component estimates in linear mixed models, and this problem is expected to also affect the ES model. The purpose of the present paper, therefore, is to propose a method based on residual (or restricted) maximum likelihood (REML). Our simulation shows that this new method is quite competitive to methods based on full ML in terms of bias and mean squared error. In addition, some limitations of the ES model are discussed. While this model splits direct and indirect evidence, it is not a plausible model for the cause of inconsistency.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.