Benjamin M. Abdel-Karim, Nicolas Pfeuffer, K. Valerie Carl, Oliver Hinz
{"title":"基于人工智能的系统如何引发反思:以人工智能增强诊断工作为例","authors":"Benjamin M. Abdel-Karim, Nicolas Pfeuffer, K. Valerie Carl, Oliver Hinz","doi":"10.25300/misq/2022/16773","DOIUrl":null,"url":null,"abstract":"<style>#html-body [data-pb-style=S2AMIW1]{justify-content:flex-start;display:flex;flex-direction:column;background-position:left top;background-size:cover;background-repeat:no-repeat;background-attachment:scroll}</style>This paper addresses a thus-far neglected dimension in human-artificial intelligence (AI) augmentation: machine-induced reflections. By establishing a grounded theoretical-informed model of machine-induced reflection, we contribute to the ongoing discussion in information systems (IS) regarding AI and research on reflection theories. In our multistage study, physicians used a machine learning-based (ML) clinical decision support system (CDSS) to see if and how this interaction can stimulate reflective practice in the context of an X-ray diagnosis task. By analyzing verbal protocols, performance metrics, and survey data, we developed an integrative theoretical foundation to explain how ML-based systems can help stimulate reflective practice. Individuals engage in more critical or shallower modes depending on whether they perceive a conflict or agreement with these CDSS systems, which in turn leads to different levels of reflection depth. By uncovering the process of machine-induced reflections, we offer IS research a different perspective on how such AI-based systems can help individuals become more reflective, and consequently more effective, professionals. This perspective stands in stark contrast to the traditional, efficiency-focused view of ML-based decision support systems and also enriches theories on human-AI augmentation.","PeriodicalId":49807,"journal":{"name":"Mis Quarterly","volume":"116 7","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How AI-Based Systems Can Induce Reflections: The Case of AI-Augmented Diagnostic Work\",\"authors\":\"Benjamin M. Abdel-Karim, Nicolas Pfeuffer, K. Valerie Carl, Oliver Hinz\",\"doi\":\"10.25300/misq/2022/16773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<style>#html-body [data-pb-style=S2AMIW1]{justify-content:flex-start;display:flex;flex-direction:column;background-position:left top;background-size:cover;background-repeat:no-repeat;background-attachment:scroll}</style>This paper addresses a thus-far neglected dimension in human-artificial intelligence (AI) augmentation: machine-induced reflections. By establishing a grounded theoretical-informed model of machine-induced reflection, we contribute to the ongoing discussion in information systems (IS) regarding AI and research on reflection theories. In our multistage study, physicians used a machine learning-based (ML) clinical decision support system (CDSS) to see if and how this interaction can stimulate reflective practice in the context of an X-ray diagnosis task. By analyzing verbal protocols, performance metrics, and survey data, we developed an integrative theoretical foundation to explain how ML-based systems can help stimulate reflective practice. Individuals engage in more critical or shallower modes depending on whether they perceive a conflict or agreement with these CDSS systems, which in turn leads to different levels of reflection depth. By uncovering the process of machine-induced reflections, we offer IS research a different perspective on how such AI-based systems can help individuals become more reflective, and consequently more effective, professionals. This perspective stands in stark contrast to the traditional, efficiency-focused view of ML-based decision support systems and also enriches theories on human-AI augmentation.\",\"PeriodicalId\":49807,\"journal\":{\"name\":\"Mis Quarterly\",\"volume\":\"116 7\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mis Quarterly\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.25300/misq/2022/16773\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mis Quarterly","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.25300/misq/2022/16773","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
How AI-Based Systems Can Induce Reflections: The Case of AI-Augmented Diagnostic Work
This paper addresses a thus-far neglected dimension in human-artificial intelligence (AI) augmentation: machine-induced reflections. By establishing a grounded theoretical-informed model of machine-induced reflection, we contribute to the ongoing discussion in information systems (IS) regarding AI and research on reflection theories. In our multistage study, physicians used a machine learning-based (ML) clinical decision support system (CDSS) to see if and how this interaction can stimulate reflective practice in the context of an X-ray diagnosis task. By analyzing verbal protocols, performance metrics, and survey data, we developed an integrative theoretical foundation to explain how ML-based systems can help stimulate reflective practice. Individuals engage in more critical or shallower modes depending on whether they perceive a conflict or agreement with these CDSS systems, which in turn leads to different levels of reflection depth. By uncovering the process of machine-induced reflections, we offer IS research a different perspective on how such AI-based systems can help individuals become more reflective, and consequently more effective, professionals. This perspective stands in stark contrast to the traditional, efficiency-focused view of ML-based decision support systems and also enriches theories on human-AI augmentation.
期刊介绍:
Journal Name: MIS Quarterly
Editorial Objective:
The editorial objective of MIS Quarterly is focused on:
Enhancing and communicating knowledge related to:
Development of IT-based services
Management of IT resources
Use, impact, and economics of IT with managerial, organizational, and societal implications
Addressing professional issues affecting the Information Systems (IS) field as a whole
Key Focus Areas:
Development of IT-based services
Management of IT resources
Use, impact, and economics of IT with managerial, organizational, and societal implications
Professional issues affecting the IS field as a whole