Mette Dam Madsen, Naomi Duijvesteijn, Julius van der Werf, Sam Clark
{"title":"在布基纳法索和法国饲养的鸡在宏观环境中的微遗传环境敏感性","authors":"Mette Dam Madsen, Naomi Duijvesteijn, Julius van der Werf, Sam Clark","doi":"10.1186/s12711-023-00854-7","DOIUrl":null,"url":null,"abstract":"Commercial poultry production systems follow a pyramidal structure with a nucleus of purebred animals under controlled conditions at the top and crossbred animals under commercial production conditions at the bottom. Genetic correlations between the same phenotypes on nucleus and production animals can therefore be influenced by differences both in purebred-crossbred genotypes and in genotype-by-environment interactions across the two environments, known as macro-genetic environmental sensitivity (GES). Within each environment, genotype-by-environment interactions can also occur due to so-called micro-GES. Micro-GES causes heritable variation in phenotypes and decreases uniformity. In this study, genetic variances of body weight (BW) and of micro-GES of BW and the impacts of purebred-crossbred differences and macro-environmental differences on micro-GES of BW were estimated. The dataset contained three subpopulations of slow-growing broiler chickens: purebred chickens (PB) reared in France, and crossbred chickens reared in France (FR) under the same conditions as PB or reared in Burkina Faso (BF) under local conditions. The crossbred chickens were offspring of the same dam line and had PB as their sire line. Estimates of heritability of BW and micro-GES of BW were 0.54 (SE of 0.02) and 0.06 (0.01), 0.67 (0.03) and 0.03 (0.01), and 0.68 (0.04) and 0.02 (0.01) for the BF, FR, and PB subpopulations, respectively. Estimates of the genetic correlations for BW between the three subpopulations were moderately positive (0.37 to 0.53) and those for micro-GES were weakly to moderately positive (0.01 to 0.44). The results show that the heritability of the micro-GES of BW varies with macro-environment, which indicates that responses to selection are expected to differ between macro-environments. The weak to moderate positive genetic correlations between subpopulations indicate that both macro-environmental differences and purebred-crossbred differences can cause re-ranking of sires based on their estimated breeding values for micro-GES of BW. Thus, the sire that produces the most variable progeny in one macro-environment may not be the one that produces the most variable offspring in another. Similarly, the sire that produces the most variable purebred progeny may not produce the most variable crossbred progeny. The results highlight the need for investigating micro-GES for all subpopulations included in the selection scheme, to ensure optimal genetic gain in all subpopulations.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"121 29","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-genetic environmental sensitivity across macro-environments of chickens reared in Burkina Faso and France\",\"authors\":\"Mette Dam Madsen, Naomi Duijvesteijn, Julius van der Werf, Sam Clark\",\"doi\":\"10.1186/s12711-023-00854-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial poultry production systems follow a pyramidal structure with a nucleus of purebred animals under controlled conditions at the top and crossbred animals under commercial production conditions at the bottom. Genetic correlations between the same phenotypes on nucleus and production animals can therefore be influenced by differences both in purebred-crossbred genotypes and in genotype-by-environment interactions across the two environments, known as macro-genetic environmental sensitivity (GES). Within each environment, genotype-by-environment interactions can also occur due to so-called micro-GES. Micro-GES causes heritable variation in phenotypes and decreases uniformity. In this study, genetic variances of body weight (BW) and of micro-GES of BW and the impacts of purebred-crossbred differences and macro-environmental differences on micro-GES of BW were estimated. The dataset contained three subpopulations of slow-growing broiler chickens: purebred chickens (PB) reared in France, and crossbred chickens reared in France (FR) under the same conditions as PB or reared in Burkina Faso (BF) under local conditions. The crossbred chickens were offspring of the same dam line and had PB as their sire line. Estimates of heritability of BW and micro-GES of BW were 0.54 (SE of 0.02) and 0.06 (0.01), 0.67 (0.03) and 0.03 (0.01), and 0.68 (0.04) and 0.02 (0.01) for the BF, FR, and PB subpopulations, respectively. Estimates of the genetic correlations for BW between the three subpopulations were moderately positive (0.37 to 0.53) and those for micro-GES were weakly to moderately positive (0.01 to 0.44). The results show that the heritability of the micro-GES of BW varies with macro-environment, which indicates that responses to selection are expected to differ between macro-environments. The weak to moderate positive genetic correlations between subpopulations indicate that both macro-environmental differences and purebred-crossbred differences can cause re-ranking of sires based on their estimated breeding values for micro-GES of BW. Thus, the sire that produces the most variable progeny in one macro-environment may not be the one that produces the most variable offspring in another. Similarly, the sire that produces the most variable purebred progeny may not produce the most variable crossbred progeny. The results highlight the need for investigating micro-GES for all subpopulations included in the selection scheme, to ensure optimal genetic gain in all subpopulations.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"121 29\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-023-00854-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00854-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Micro-genetic environmental sensitivity across macro-environments of chickens reared in Burkina Faso and France
Commercial poultry production systems follow a pyramidal structure with a nucleus of purebred animals under controlled conditions at the top and crossbred animals under commercial production conditions at the bottom. Genetic correlations between the same phenotypes on nucleus and production animals can therefore be influenced by differences both in purebred-crossbred genotypes and in genotype-by-environment interactions across the two environments, known as macro-genetic environmental sensitivity (GES). Within each environment, genotype-by-environment interactions can also occur due to so-called micro-GES. Micro-GES causes heritable variation in phenotypes and decreases uniformity. In this study, genetic variances of body weight (BW) and of micro-GES of BW and the impacts of purebred-crossbred differences and macro-environmental differences on micro-GES of BW were estimated. The dataset contained three subpopulations of slow-growing broiler chickens: purebred chickens (PB) reared in France, and crossbred chickens reared in France (FR) under the same conditions as PB or reared in Burkina Faso (BF) under local conditions. The crossbred chickens were offspring of the same dam line and had PB as their sire line. Estimates of heritability of BW and micro-GES of BW were 0.54 (SE of 0.02) and 0.06 (0.01), 0.67 (0.03) and 0.03 (0.01), and 0.68 (0.04) and 0.02 (0.01) for the BF, FR, and PB subpopulations, respectively. Estimates of the genetic correlations for BW between the three subpopulations were moderately positive (0.37 to 0.53) and those for micro-GES were weakly to moderately positive (0.01 to 0.44). The results show that the heritability of the micro-GES of BW varies with macro-environment, which indicates that responses to selection are expected to differ between macro-environments. The weak to moderate positive genetic correlations between subpopulations indicate that both macro-environmental differences and purebred-crossbred differences can cause re-ranking of sires based on their estimated breeding values for micro-GES of BW. Thus, the sire that produces the most variable progeny in one macro-environment may not be the one that produces the most variable offspring in another. Similarly, the sire that produces the most variable purebred progeny may not produce the most variable crossbred progeny. The results highlight the need for investigating micro-GES for all subpopulations included in the selection scheme, to ensure optimal genetic gain in all subpopulations.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.