{"title":"两个广义Fibonacci q矩阵的线性组合的广义Fibonacci q矩阵的表征","authors":"A. Öndül, T. Demirkol, H. Özdemir","doi":"10.1007/s13370-023-01140-x","DOIUrl":null,"url":null,"abstract":"<div><p>It is given a characterization of being a matrix <span>\\(Q_{g({a_3},{b_3})}^{(k)}\\)</span> of linear combination of a matrix <span>\\(Q_{g({a_1},{b_1})}^{(n)}\\)</span> and a matrix <span>\\(Q_{g({a_2},{b_2})}^{(m)}\\)</span>, where <span>\\(a_{i}, b_{i} \\in \\mathbb {R}^{*}\\)</span>, <span>\\(i=1, 2, 3\\)</span>, <span>\\(m, n, k \\in \\mathbb {Z}\\)</span>, and <span>\\(Q_{g({a},{b})}^{(l)}\\)</span> denotes an (<i>a</i>, <i>b</i>)-generalized Fibonacci <i>Q</i>-matrix with <span>\\(l\\in \\mathbb {Z}\\)</span>. In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices\",\"authors\":\"A. Öndül, T. Demirkol, H. Özdemir\",\"doi\":\"10.1007/s13370-023-01140-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is given a characterization of being a matrix <span>\\\\(Q_{g({a_3},{b_3})}^{(k)}\\\\)</span> of linear combination of a matrix <span>\\\\(Q_{g({a_1},{b_1})}^{(n)}\\\\)</span> and a matrix <span>\\\\(Q_{g({a_2},{b_2})}^{(m)}\\\\)</span>, where <span>\\\\(a_{i}, b_{i} \\\\in \\\\mathbb {R}^{*}\\\\)</span>, <span>\\\\(i=1, 2, 3\\\\)</span>, <span>\\\\(m, n, k \\\\in \\\\mathbb {Z}\\\\)</span>, and <span>\\\\(Q_{g({a},{b})}^{(l)}\\\\)</span> denotes an (<i>a</i>, <i>b</i>)-generalized Fibonacci <i>Q</i>-matrix with <span>\\\\(l\\\\in \\\\mathbb {Z}\\\\)</span>. In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01140-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01140-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给出了矩阵\(Q_{g({a_1},{b_1})}^{(n)}\)与矩阵\(Q_{g({a_2},{b_2})}^{(m)}\)线性组合的矩阵\(Q_{g({a_3},{b_3})}^{(k)}\)的一个表征,其中\(a_{i}, b_{i} \in \mathbb {R}^{*}\), \(i=1, 2, 3\), \(m, n, k \in \mathbb {Z}\), \(Q_{g({a},{b})}^{(l)}\)表示一个(a, b)-广义Fibonacci q -矩阵\(l\in \mathbb {Z}\)。此外,还举例说明了主要结果。最后,给出了所得主要结果的一些应用。
On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices
It is given a characterization of being a matrix \(Q_{g({a_3},{b_3})}^{(k)}\) of linear combination of a matrix \(Q_{g({a_1},{b_1})}^{(n)}\) and a matrix \(Q_{g({a_2},{b_2})}^{(m)}\), where \(a_{i}, b_{i} \in \mathbb {R}^{*}\), \(i=1, 2, 3\), \(m, n, k \in \mathbb {Z}\), and \(Q_{g({a},{b})}^{(l)}\) denotes an (a, b)-generalized Fibonacci Q-matrix with \(l\in \mathbb {Z}\). In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.