Hongxing Yuan, Wei Gao, Xinhao Wan, Jianqi Ye, Dan Wen
{"title":"调整贵金属气凝胶的表面电子结构,促进电催化氧还原","authors":"Hongxing Yuan, Wei Gao, Xinhao Wan, Jianqi Ye, Dan Wen","doi":"10.1016/j.jechem.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>The sluggish kinetics of the oxygen reduction reaction (ORR) is the bottleneck for various electrochemical energy conversion devices. Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts. Here, the surface electronic structure of Pt-based noble metal aerogels (NMAs) was modulated by various organic ligands, among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis. Theoretical calculations suggested the smaller energy barrier for the transformation of O* to OH* and downshift the <em>d</em>-band center of Pt due to the interaction between 4-methylphenylene and the surface metals, thus enhancing the ORR intrinsic activity. Both Pt<sub>3</sub>Ni and PtPd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media. Remarkably, the 4-methylphenylene modified PtPd aerogel exhibited the higher half-wave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C. This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 557-564"},"PeriodicalIF":14.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction\",\"authors\":\"Hongxing Yuan, Wei Gao, Xinhao Wan, Jianqi Ye, Dan Wen\",\"doi\":\"10.1016/j.jechem.2023.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sluggish kinetics of the oxygen reduction reaction (ORR) is the bottleneck for various electrochemical energy conversion devices. Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts. Here, the surface electronic structure of Pt-based noble metal aerogels (NMAs) was modulated by various organic ligands, among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis. Theoretical calculations suggested the smaller energy barrier for the transformation of O* to OH* and downshift the <em>d</em>-band center of Pt due to the interaction between 4-methylphenylene and the surface metals, thus enhancing the ORR intrinsic activity. Both Pt<sub>3</sub>Ni and PtPd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media. Remarkably, the 4-methylphenylene modified PtPd aerogel exhibited the higher half-wave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C. This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 557-564\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623006514\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623006514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
The sluggish kinetics of the oxygen reduction reaction (ORR) is the bottleneck for various electrochemical energy conversion devices. Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts. Here, the surface electronic structure of Pt-based noble metal aerogels (NMAs) was modulated by various organic ligands, among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis. Theoretical calculations suggested the smaller energy barrier for the transformation of O* to OH* and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals, thus enhancing the ORR intrinsic activity. Both Pt3Ni and PtPd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media. Remarkably, the 4-methylphenylene modified PtPd aerogel exhibited the higher half-wave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C. This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.