改进重复测量的混合模型,显著提高随机试验的精度。

IF 1.2 4区 数学
International Journal of Biostatistics Pub Date : 2023-11-29 eCollection Date: 2024-11-01 DOI:10.1515/ijb-2022-0101
Bingkai Wang, Yu Du
{"title":"改进重复测量的混合模型,显著提高随机试验的精度。","authors":"Bingkai Wang, Yu Du","doi":"10.1515/ijb-2022-0101","DOIUrl":null,"url":null,"abstract":"<p><p>In randomized trials, repeated measures of the outcome are routinely collected. The mixed model for repeated measures (MMRM) leverages the information from these repeated outcome measures, and is often used for the primary analysis to estimate the average treatment effect at the primary endpoint. MMRM, however, can suffer from bias and precision loss when it models intermediate outcomes incorrectly, and hence fails to use the post-randomization information harmlessly. This paper proposes an extension of the commonly used MMRM, called IMMRM, that improves the robustness and optimizes the precision gain from covariate adjustment, stratified randomization, and adjustment for intermediate outcome measures. Under regularity conditions and missing completely at random, we prove that the IMMRM estimator for the average treatment effect is robust to arbitrary model misspecification and is asymptotically equal or more precise than the analysis of covariance (ANCOVA) estimator and the MMRM estimator. Under missing at random, IMMRM is less likely to be misspecified than MMRM, and we demonstrate via simulation studies that IMMRM continues to have less bias and smaller variance. Our results are further supported by a re-analysis of a randomized trial for the treatment of diabetes.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"585-598"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the mixed model for repeated measures to robustly increase precision in randomized trials.\",\"authors\":\"Bingkai Wang, Yu Du\",\"doi\":\"10.1515/ijb-2022-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In randomized trials, repeated measures of the outcome are routinely collected. The mixed model for repeated measures (MMRM) leverages the information from these repeated outcome measures, and is often used for the primary analysis to estimate the average treatment effect at the primary endpoint. MMRM, however, can suffer from bias and precision loss when it models intermediate outcomes incorrectly, and hence fails to use the post-randomization information harmlessly. This paper proposes an extension of the commonly used MMRM, called IMMRM, that improves the robustness and optimizes the precision gain from covariate adjustment, stratified randomization, and adjustment for intermediate outcome measures. Under regularity conditions and missing completely at random, we prove that the IMMRM estimator for the average treatment effect is robust to arbitrary model misspecification and is asymptotically equal or more precise than the analysis of covariance (ANCOVA) estimator and the MMRM estimator. Under missing at random, IMMRM is less likely to be misspecified than MMRM, and we demonstrate via simulation studies that IMMRM continues to have less bias and smaller variance. Our results are further supported by a re-analysis of a randomized trial for the treatment of diabetes.</p>\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"585-598\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2022-0101\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2022-0101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在随机试验中,结果的重复测量是常规收集的。重复测量的混合模型(MMRM)利用这些重复结果测量的信息,通常用于主要分析,以估计主要终点的平均治疗效果。然而,当MMRM不正确地模拟中间结果时,它可能会遭受偏差和精度损失,因此不能无害地使用随机化后的信息。本文提出了一种常用的MMRM的扩展,称为IMMRM,它提高了鲁棒性并优化了协变量调整、分层随机化和中间结果测量调整的精度增益。在正则性条件和完全随机缺失条件下,证明了IMMRM估计对任意模型错规范的平均处理效果具有鲁棒性,并且与协方差分析(ANCOVA)估计和MMRM估计渐近相等或更精确。在随机缺失的情况下,IMMRM比MMRM更不容易被错误指定,并且我们通过模拟研究证明IMMRM仍然具有更小的偏差和更小的方差。我们的研究结果得到了一项针对糖尿病治疗的随机试验的再分析的进一步支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the mixed model for repeated measures to robustly increase precision in randomized trials.

In randomized trials, repeated measures of the outcome are routinely collected. The mixed model for repeated measures (MMRM) leverages the information from these repeated outcome measures, and is often used for the primary analysis to estimate the average treatment effect at the primary endpoint. MMRM, however, can suffer from bias and precision loss when it models intermediate outcomes incorrectly, and hence fails to use the post-randomization information harmlessly. This paper proposes an extension of the commonly used MMRM, called IMMRM, that improves the robustness and optimizes the precision gain from covariate adjustment, stratified randomization, and adjustment for intermediate outcome measures. Under regularity conditions and missing completely at random, we prove that the IMMRM estimator for the average treatment effect is robust to arbitrary model misspecification and is asymptotically equal or more precise than the analysis of covariance (ANCOVA) estimator and the MMRM estimator. Under missing at random, IMMRM is less likely to be misspecified than MMRM, and we demonstrate via simulation studies that IMMRM continues to have less bias and smaller variance. Our results are further supported by a re-analysis of a randomized trial for the treatment of diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信