时间流逝的感觉与大脑皮层反复出现的持续活动和θ波节律有关。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Brain connectivity Pub Date : 2024-02-01 Epub Date: 2024-01-10 DOI:10.1089/brain.2023.0010
Emma M Millon, Ali E Haddad, Han Yan M Chang, Laleh Najafizadeh, Tracey J Shors
{"title":"时间流逝的感觉与大脑皮层反复出现的持续活动和θ波节律有关。","authors":"Emma M Millon, Ali E Haddad, Han Yan M Chang, Laleh Najafizadeh, Tracey J Shors","doi":"10.1089/brain.2023.0010","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> We are constantly estimating how much time has passed, and yet know little about the brain mechanisms through which this process occurs. In this pilot study, we evaluated so-called subjective time estimation with the temporal bisection task, while recording brain activity from electroencephalography (EEG). <b><i>Methods:</i></b> Nine adult participants were trained to distinguish between two durations of visual stimuli as either \"short\" (400 msec) or \"long\" (1600 msec). They were then presented with stimulus durations in between the long and short stimuli. EEG data from 128 electrodes were examined with a novel analytical method that identifies segments of sustained cortical activity during the task. <b><i>Results:</i></b> Participants tended to categorize intermediate durations as \"long\" more frequently than \"short\" and were thus experiencing time as moving faster while overestimating the amount of time passing. Their mean bisection point (during which frequency of selecting short vs. long is equal) was closer to the geometric mean of task stimuli (800 msec) rather than the arithmetic mean (1000 msec). In contrast, sustained brain activity occurred closer to the arithmetic mean. The recurrence rate of this activity was highly related to the bisection point, especially when analyzed within naturally occurring theta oscillations (4-8 Hz) (<i>r</i> = -0.90). <b><i>Discussion:</i></b> Sustained activity across the cortex within the theta range may reflect temporal durations, whereas its repeated appearance relates to the subjective feeling of time passing.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"39-47"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Feeling of Time Passing Is Associated with Recurrent Sustained Activity and Theta Rhythms Across the Cortex.\",\"authors\":\"Emma M Millon, Ali E Haddad, Han Yan M Chang, Laleh Najafizadeh, Tracey J Shors\",\"doi\":\"10.1089/brain.2023.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> We are constantly estimating how much time has passed, and yet know little about the brain mechanisms through which this process occurs. In this pilot study, we evaluated so-called subjective time estimation with the temporal bisection task, while recording brain activity from electroencephalography (EEG). <b><i>Methods:</i></b> Nine adult participants were trained to distinguish between two durations of visual stimuli as either \\\"short\\\" (400 msec) or \\\"long\\\" (1600 msec). They were then presented with stimulus durations in between the long and short stimuli. EEG data from 128 electrodes were examined with a novel analytical method that identifies segments of sustained cortical activity during the task. <b><i>Results:</i></b> Participants tended to categorize intermediate durations as \\\"long\\\" more frequently than \\\"short\\\" and were thus experiencing time as moving faster while overestimating the amount of time passing. Their mean bisection point (during which frequency of selecting short vs. long is equal) was closer to the geometric mean of task stimuli (800 msec) rather than the arithmetic mean (1000 msec). In contrast, sustained brain activity occurred closer to the arithmetic mean. The recurrence rate of this activity was highly related to the bisection point, especially when analyzed within naturally occurring theta oscillations (4-8 Hz) (<i>r</i> = -0.90). <b><i>Discussion:</i></b> Sustained activity across the cortex within the theta range may reflect temporal durations, whereas its repeated appearance relates to the subjective feeling of time passing.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"39-47\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2023.0010\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

导读:我们不断地估算着时间的流逝,却对这一过程发生的大脑机制知之甚少。在这项初步研究中,我们通过时间对分任务评估了所谓的“主观时间估计”,同时记录了脑电图(EEG)的大脑活动。方法:九名成年参与者接受训练,以区分两种视觉刺激的持续时间:“短”(400毫秒)和“长”(1600毫秒)。然后给他们看长刺激和短刺激之间的刺激持续时间。来自128个电极的脑电图数据用一种新的分析方法进行了检查,该方法确定了任务期间功能网络中持续皮层活动的片段。结果:参与者倾向于将中间持续时间分类为“长”而不是“短”,因此在高估时间流逝量的同时,他们认为时间过得更快。他们的平均平分点(选择短和选择长的频率相等)更接近任务刺激的几何平均值(800ms),而不是算术平均值(1000ms)。相比之下,持续的大脑活动更接近算术平均值。这种活动的复发率与对分点高度相关,特别是在自然发生的θ振荡(4-8 Hz)中分析时(r = -0.90)。讨论:大脑皮层在θ波范围内的持续活动可能反映了对时间持续时间的客观测量,而其反复出现与时间流逝的主观感觉有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Feeling of Time Passing Is Associated with Recurrent Sustained Activity and Theta Rhythms Across the Cortex.

Introduction: We are constantly estimating how much time has passed, and yet know little about the brain mechanisms through which this process occurs. In this pilot study, we evaluated so-called subjective time estimation with the temporal bisection task, while recording brain activity from electroencephalography (EEG). Methods: Nine adult participants were trained to distinguish between two durations of visual stimuli as either "short" (400 msec) or "long" (1600 msec). They were then presented with stimulus durations in between the long and short stimuli. EEG data from 128 electrodes were examined with a novel analytical method that identifies segments of sustained cortical activity during the task. Results: Participants tended to categorize intermediate durations as "long" more frequently than "short" and were thus experiencing time as moving faster while overestimating the amount of time passing. Their mean bisection point (during which frequency of selecting short vs. long is equal) was closer to the geometric mean of task stimuli (800 msec) rather than the arithmetic mean (1000 msec). In contrast, sustained brain activity occurred closer to the arithmetic mean. The recurrence rate of this activity was highly related to the bisection point, especially when analyzed within naturally occurring theta oscillations (4-8 Hz) (r = -0.90). Discussion: Sustained activity across the cortex within the theta range may reflect temporal durations, whereas its repeated appearance relates to the subjective feeling of time passing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信