{"title":"作为换向器的电阻阵列","authors":"V. B. Kotov, Z. B. Sokhova","doi":"10.3103/S1060992X23060085","DOIUrl":null,"url":null,"abstract":"<p>Being necessary components of large smart systems (including the brain), commutators can be realized on the basis of a resistor array with variable resistors. The paper considers some switching (commutating) capabilities of the resistor array. A switching graph is used to describe the work of the resistor array. This sort of graph provides a visual representation of generated high-conductivity current flow channels. A two-terminal scheme is used to generate the switching graph. In the scheme a voltage is supplies to a particular couple of poles (conductors), other poles being isolated from the power sources. Changing couples of poles makes it possible to generate a series of switching graphs. We demonstrate the possibility to create an interconnection between two or more blocks connected to the appropriate poles of the array. To do this, the resistor array must have a suitable signature (resistor directions), the applied voltage must match the signature. The series we generate are defined by not only control signals, but also the prehistory of the resistor array. Given preset resistor characteristics, the competition between graph edges plays an important role in that it contributes to the thinning of the switching graph we generate.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 2","pages":"S226 - S236"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistor Array as a Commutator\",\"authors\":\"V. B. Kotov, Z. B. Sokhova\",\"doi\":\"10.3103/S1060992X23060085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Being necessary components of large smart systems (including the brain), commutators can be realized on the basis of a resistor array with variable resistors. The paper considers some switching (commutating) capabilities of the resistor array. A switching graph is used to describe the work of the resistor array. This sort of graph provides a visual representation of generated high-conductivity current flow channels. A two-terminal scheme is used to generate the switching graph. In the scheme a voltage is supplies to a particular couple of poles (conductors), other poles being isolated from the power sources. Changing couples of poles makes it possible to generate a series of switching graphs. We demonstrate the possibility to create an interconnection between two or more blocks connected to the appropriate poles of the array. To do this, the resistor array must have a suitable signature (resistor directions), the applied voltage must match the signature. The series we generate are defined by not only control signals, but also the prehistory of the resistor array. Given preset resistor characteristics, the competition between graph edges plays an important role in that it contributes to the thinning of the switching graph we generate.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"32 2\",\"pages\":\"S226 - S236\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X23060085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23060085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Being necessary components of large smart systems (including the brain), commutators can be realized on the basis of a resistor array with variable resistors. The paper considers some switching (commutating) capabilities of the resistor array. A switching graph is used to describe the work of the resistor array. This sort of graph provides a visual representation of generated high-conductivity current flow channels. A two-terminal scheme is used to generate the switching graph. In the scheme a voltage is supplies to a particular couple of poles (conductors), other poles being isolated from the power sources. Changing couples of poles makes it possible to generate a series of switching graphs. We demonstrate the possibility to create an interconnection between two or more blocks connected to the appropriate poles of the array. To do this, the resistor array must have a suitable signature (resistor directions), the applied voltage must match the signature. The series we generate are defined by not only control signals, but also the prehistory of the resistor array. Given preset resistor characteristics, the competition between graph edges plays an important role in that it contributes to the thinning of the switching graph we generate.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.